Skip to main content

Advertisement

Log in

An integrated biotechnology platform for developing sustainable chemical processes

  • Metabolic Engineering and Synthetic Biology
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Genomatica has established an integrated computational/experimental metabolic engineering platform to design, create, and optimize novel high performance organisms and bioprocesses. Here we present our platform and its use to develop E. coli strains for production of the industrial chemical 1,4-butanediol (BDO) from sugars. A series of examples are given to demonstrate how a rational approach to strain engineering, including carefully designed diagnostic experiments, provided critical insights about pathway bottlenecks, byproducts, expression balancing, and commercial robustness, leading to a superior BDO production strain and process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Banner T, Fosmer A, Jessen HJ, Marasco E, Rush B, Veldhouse J, de Souza M (2011) Microbial bioprocesses for industrial-scale chemical production. In: Tao J, Kazlauskas R (eds) Biocatalysis for green chemistry and chemical process development. Wiley, Hoboken

    Google Scholar 

  2. Bennett BD, Kimball EH, Gao M, Osterhout R, Van Dien SJ, Rabinowitz JD (2009) Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat Chem Biol 5(8):593–599

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Boyd D, Weiss DS, Chen JC, Beckwith J (2000) Towards single-copy gene expression systems making gene cloning physiologically relevant: Lambda InCh, a simple Escherichia coli plasmid-chromosome shuttle system. J Bacteriol 182(3):842–847

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Carlier A, Chevrot R, Dessaux Y, Faure D (2004) The assimilation of gamma-butyrolactone in Agrobacterium tumefaciens C58 interferes with the accumulation of the N-acyl-homoserine lactone signal. Mol Plant Microbe Interact 17(9):951–957

    Article  CAS  PubMed  Google Scholar 

  5. Ciolino LA, Mesmer MZ, Satzger RD, Machal AC, McCauley HA, Mohrhaus AS (2001) The chemical interconversion of GHB and GBL: forensic issues and implications. J Forensic Sci 46(6):1315–1323

    CAS  PubMed  Google Scholar 

  6. Erickson B, Nelson JE, Winters P (2012) Perspective on opportunities in industrial biotechnology in renewable chemicals. Biotechnol J7:176–185

    Google Scholar 

  7. Gerber SA, Rush J, Stemman O, Kirschner MW, Gygi SP (2003) Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc Natl Acad Sci USA 100:6940–6945

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Goh S, Good L (2008) Plasmid selection in Escherichia coli using an endogenous essential gene marker. BMC Biotechnol 8:61

    Article  PubMed Central  PubMed  Google Scholar 

  9. Hillson NJ, Rosengarten RD, Keasling JD (2012) j5 DNA assembly design automation software. ACS Synth Biol 1:14–21

    Article  CAS  PubMed  Google Scholar 

  10. Hwang HJ, Park JH, Kim JH, Kong MK, Kim JW, Park JW, Cho KM, Lee PC (2014) Engineering of a butyraldehyde dehydrogenase of Clostridium saccharoperbutylacetonicum to fit an engineered 1,4-butanediol pathway in Escherichia coli. Biotechnol Bioeng 111(7):1374–1384

    Article  CAS  PubMed  Google Scholar 

  11. Iuchi S, Lin EC (1988) arcA (dye), a global regulatory gene in Escherichia coli mediating repression of enzymes in aerobic pathways. Proc Natl Acad Sci USA 85:1888–1892

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Kim Y, Ingram LO, Shanmugam KT (2008) Dihydrolipoamide dehydrogenase mutation alters the NADH sensitivity of pyruvate dehydrogenase complex of Escherichia coli K-12. J Bacteriol 190:3851–3858

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Nakamura CE, Whited GM (2003) Metabolic engineering for the microbial production of 1,3-propanediol. Curr Opin Biotechnol 14:454–459

    Article  CAS  PubMed  Google Scholar 

  14. Picotti P, Aebersold R (2012) Selected reaction monitoring–based proteomics: workflows, potential, pitfalls and future directions. Nat Methods 9:555–566

    Article  CAS  PubMed  Google Scholar 

  15. Risso C, Van Dien SJ, Orloff A, Lovley DR (2008) Elucidation of an alternate isoleucine biosynthesis pathway in Geobactersulfurreducens. J Bacteriol 190(7):2266–2274

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Salis HM, Mirsky EA, Voigt CA (2009) Automated design of synthetic ribosome binding sites to control protein expression. Nat Biotechnol 27:946–950

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Silverman PM, Rother S, Gaudin H (1991) Arc and Sfr functions of the Escherichia coli K-12 arcA gene product are genetically and physiologically separable. J Bacteriol 173(18):5648–5652

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Van Dien S (2013) From the first drop to the first truckload: commercialization of microbial processes for renewable chemicals. Curr Opin Biotechnol 24(6):1061–1068

    Article  PubMed  Google Scholar 

  19. Wahl A, El Massaoudi M, Schipper D, Wiechert W, Takors R (2004) Serial 13C-based flux analysis of an l-phenylalanine-producing E. coli strain using the sensor reactor. Biotechnol Prog 20(3):706–714

    Article  CAS  PubMed  Google Scholar 

  20. Wiese S, Reidegeld KA, Meyer HE, Warscheid B (2007) Protein labeling by iTRAQ: a new tool for quantitative mass spectrometry in proteome research. Proteomics 7:340–350

    Article  CAS  PubMed  Google Scholar 

  21. Wolfe AJ (2005) The acetate switch. Microbiol Mol Biol Rev 69(1):12–50

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Yang TH, Heinzle E, Wittmann C (2005) Theoretical aspects of 13C metabolic flux analysis with sole quantification of carbon dioxide labeling. Comput Biol Chem 29(2):121–133

    Article  CAS  PubMed  Google Scholar 

  23. Yang TH, Wittmann C, Heinzle E (2006) Respirometric 13C flux analysis—Part II: in vivo flux estimation of lysine-producing Corynebacterium glutamicum. Metab Eng 8(5):432–446

    Article  CAS  Google Scholar 

  24. Yim H, Haselbeck R, Niu W, Pujol-Baxley C, Burgard A, Boldt J, Khandurina J, Trawick JD, Osterhout RE, Stephen R, Estadilla J, Teisan S, Schreyer HB, Andrae S, Yang TH, Lee SY, Burk MJ, Van Dien S (2011) Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nat Chem Biol 7:445–452

    Article  CAS  PubMed  Google Scholar 

  25. Yuan Y, Yang TH, Heinzle E (2010) 13C metabolic flux analysis for larger scale cultivation using gas chromatography-combustion-isotope ratio mass spectrometry. Metab Eng 12(4):392–400

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J. Van Dien.

Additional information

Special Issue: Metabolic Engineering.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barton, N.R., Burgard, A.P., Burk, M.J. et al. An integrated biotechnology platform for developing sustainable chemical processes. J Ind Microbiol Biotechnol 42, 349–360 (2015). https://doi.org/10.1007/s10295-014-1541-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-014-1541-1

Keywords

Navigation