Skip to main content
Log in

Genetic analysis of D-xylose metabolism pathways in Gluconobacter oxydans 621H

  • Genetics and Molecular Biology of Industrial Organisms
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

D-xylose is one of the most abundant carbohydrates in nature. This work focuses on xylose metabolism of Gluconobacter oxydans as revealed by a few studies conducted to understand xylose utilization by this strain. Interestingly, the G. oxydans 621H Δmgdh strain (deficient in membrane-bound glucose dehydrogenase) was greatly inhibited when grown on xylose and no xylonate accumulation was observed in the medium. These experimental observations suggested that the mgdh gene was responsible for the conversion of xylose to xylonate in G. oxydans, which was also verified by whole-cell biotransformation. Since 621H Δmgdh could still grow on xylose in a very small way, two seemingly important genes in the oxo-reductive pathway for xylose metabolism, a xylitol dehydrogenase-encoding gox0865 (xdh) gene and a putative xylulose kinase-encoding gox2214 (xk) gene, were knocked out to investigate the effects of both genes on xylose metabolism. The results showed that the gox2214 gene was not involved in xylose metabolism, and there might be other genes encoding xylulose kinase. Though the gox0865 gene played a less important role in xylose metabolism compared to the mgdh gene, it was significant in xylitol utilization in G. oxydans, which meant that gox0865 was a necessary gene for the oxo-reductive pathway of xylose in vivo. To sum up, when xylose was used as the carbon source, the majority of xylose was directly oxidized to xylonate for further metabolism in G. oxydans, whereas only a minor part of xylose was metabolized by the oxo-reductive pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bu S, Tsang PWK, Fu RZ (2005) GroEL-GroES solubilizes abundantly expressed xylulokinase in Escherichia coli. J Appl Microbiol 98(1):210–215

    Article  PubMed  CAS  Google Scholar 

  2. Buchert J, Viikari L (1988) Oxidative D-xylose metabolism of Gluconobacter oxydans. Appl Microbiol Biotechnol 29(4):375–379

    Article  CAS  Google Scholar 

  3. David JD, Wiesmeyer H (1970) Control of xylose metabolism in Escherichia coli. Biochim Bioph Acta 201(3):497

    Article  CAS  Google Scholar 

  4. Deppenmeier U, Ehrenreich A (2009) Physiology of acetic acid bacteria in light of the genome sequence of Gluconobacter oxydans. J Mol Microbiol Biotechnol 16(1–2):69–80

    Article  PubMed  CAS  Google Scholar 

  5. Derbise A, Lesic B, Dacheux D, Ghigo JM, Carniel E (2003) A rapid and simple method for inactivating chromosomal genes in Yersinia. FEMS Immunol Med Mic 38(2):113–116

    Article  CAS  Google Scholar 

  6. Erlandson KA, Delamarre SC, Batt CA (2001) Genetic evidence for a defective xylan degradation pathway in Lactococcus lactis. Appl Environ Microb 67(4):1445–1452

    Article  CAS  Google Scholar 

  7. Gírio FM, Pelica F, Amaral MT (1996) Characterization of xylitol dehydrogenase from Debaryomyces hansenii. Appl Biochem Biotech 56(1):79–87

    Article  Google Scholar 

  8. Greenfield S, Claus GW (1972) Nonfunctional tricarboxylic acid cycle and the mechanism of glutamate biosynthesis in Acetobacter suboxydans. J Bacteriol 112(3):1295–1301

    PubMed  CAS  Google Scholar 

  9. Gu Y, Ding Y, Ren C, Sun Z, Rodionov DA, Zhang WW, Yang S, Yang C, Jiang WH (2010) Reconstruction of xylose utilization pathway and regulons in Firmicutes. BMC Genomics 11(1):255

    Article  PubMed  Google Scholar 

  10. Hölscher T, Görisch H (2006) Knockout and overexpression of pyrroloquinoline quinone biosynthetic genes in Gluconobacter oxydans 621H. J Bacteriol 188(21):7668–7676

    Article  PubMed  Google Scholar 

  11. Hartree EF (1972) Determination of protein: a modification of the Lowry method that gives a linear photometric response. Anal Biochem 48(2):422–427

    Article  PubMed  CAS  Google Scholar 

  12. Jeffries TW (2006) Engineering yeasts for xylose metabolism. Curr Opin Biotech 17(3):320–326

    Article  PubMed  CAS  Google Scholar 

  13. Johnsen U, Dambeck M, Zaiss H, Fuhrer T, Soppa J, Sauer U, Schönheit P (2009) D-xylose degradation pathway in the halophilic archaeon Haloferax volcanii. J Biol Chem 284(40):27290–27303

    Article  PubMed  CAS  Google Scholar 

  14. Lindner C, Stülke J, Hecker M (1994) Regulation of xylanolytic enzymes in Bacillus subtilis. Microbiol 140(4):753–757

    Article  CAS  Google Scholar 

  15. Pival SL, Birner-Gruenberger R, Krump C, Nidetzky B (2011) D-xylulose kinase from Saccharomyces cerevisiae: isolation and characterization of the highly unstable enzyme, recombinantly produced in Escherichia coli. Protein Expres Purif 79(2):223–230

    Article  CAS  Google Scholar 

  16. Prust C, Hoffmeister M, Liesegang H, Wiezer A, Fricke WF, Ehrenreich A, Gottschalk G, Deppenmeier U (2005) Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans. Nat Biotechnol 23(2):195–200

    Article  PubMed  CAS  Google Scholar 

  17. Stephen Dahms A (1974) 3-deoxy-D-pentulosonic acid aldolase and its role in a new pathway of D-xylose degradation. Biochem Bioph Res Co 60(4):1433–1439

    Article  Google Scholar 

  18. Stephens C, Christen B, Fuchs T, Sundaram V, Watanabe K, Jenal U (2007) Genetic analysis of a novel pathway for D-xylose metabolism in Caulobacter crescentus. J Bacteriol 189(5):2181–2185

    Article  PubMed  CAS  Google Scholar 

  19. Sugiyama M, Suzuki S, Tonouchi N, Yokozeki K (2003) Cloning of the xylitol dehydrogenase gene from Gluconobacter oxydans and improved production of xylitol from D-arabitol. Biosci Biotech Bioch 67(3):584–591

    Article  CAS  Google Scholar 

  20. Weimberg R (1961) Pentose oxidation by Pseudomonas fragi. J Biol Chem 236(3):629–635

    PubMed  CAS  Google Scholar 

  21. Yang C, Hua Q, Baba T, Mori H, Shimizu K (2003) Analysis of Escherichia coli anaplerotic metabolism and its regulation mechanisms from the metabolic responses to altered dilution rates and phosphoenolpyruvate carboxykinase knockout. Biotechnol Bioeng 84(2):129–144

    Article  PubMed  Google Scholar 

  22. Zhu K, Lu LF, Wei LJ, Wei DZ, Imanka T, Hua Q (2011) Modification and evolution of Gluconobacter oxydans for enhanced growth and biotransformation capabilities at low glucose concentration. Mol Biotechnol 49(1):56–64

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (No. 31200025), National Basic Research Program of China (973 Program) (2012CB721101), Natural Science Foundation of Shanghai (11ZR1408100), and partially supported by National Special Fund for State Key Laboratory of Bioreactor Engineering (2060204), Shanghai Leading Academic Discipline Project (B505) and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Hua.

Additional information

Minhua Zhang and Liujing Wei contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, M., Wei, L., Zhou, Y. et al. Genetic analysis of D-xylose metabolism pathways in Gluconobacter oxydans 621H. J Ind Microbiol Biotechnol 40, 379–388 (2013). https://doi.org/10.1007/s10295-013-1231-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-013-1231-4

Keywords

Navigation