Skip to main content
Log in

Global transcriptome analysis of the tetrachloroethene-dechlorinating bacterium Desulfitobacterium hafniense Y51 in the presence of various electron donors and terminal electron acceptors

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Desulfitobacterium hafniense Y51 is a dechlorinating bacterium that encodes an unusually large set of O-demethylase paralogs and specialized respiratory systems including specialized electron donors and acceptors. To use this organism in bioremediation of tetrachloroethene (PCE) or trichloroethene (TCE) pollution, expression patterns of its 5,060 genes were determined under different conditions using 60-mer probes in DNA microarrays. PCE, TCE, fumarate, nitrate, and dimethyl sulfoxide (DMSO) respiration all sustain the growth of strain Y51. Global transcriptome analyses were thus performed using various electron donor and acceptor couples (respectively, pyruvate and either fumarate, TCE, nitrate, or DMSO, and vanillate/fumarate). When TCE is used as terminal electron acceptor, resulting in its detoxification, a series of electron carriers comprising a cytochrome bd-type quinol oxidase (DSY4055-4056), a ferredoxin (DSY1451), and four Fe–S proteins (DSY1626, DSY1629, DSY0733, DSY3309) are upregulated, suggesting that the products of these genes are involved in PCE oxidoreduction. Interestingly, the PCE dehalogenase cluster (pceABCT) is constitutively expressed in the media tested, with pceT being upregulated and pceC downregulated in pyruvate/TCE-containing medium. In addition, another dehalogenation enzyme (DSY1155 coding for a putative chlorophenol reductive dehalogenase), is induced 225-fold in that medium, despite not being involved in PCE respiration. Remarkably since the reducing equivalents formed during pyruvate conversion to acetyl-CoA are channeled to electron acceptors including halogenated compounds, pyruvate induces expression of a pyruvate:ferredoxin oxidoreductase. This study paves the way to understanding the physiology of D. hafniense, optimizing this microbe as a bioremediation agent, and designing bioarray sensors to monitor the presence of dechlorinating organisms in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Biel S, Simon J, Gross R, Ruiz T, Ruitenberg M, Kröger A (2002) Reconstitution of coupled fumarate respiration in liposomes by incorporating the electron transport enzymes isolated from Wolinella succinogenes. Eur J Biochem 269:1974–1983

    Article  PubMed  CAS  Google Scholar 

  2. Boyer A, Page-Belanger R, Saucier M, Villemur R, Lépine F, Juteau P, Beaudet R (2003) Purification, cloning and sequencing of an enzyme mediating the reductive dechlorination of 2,4,6-trichlorophenol from Desulfitobacterium frappieri PCP-1. Biochem J 373:297–303

    Article  PubMed  CAS  Google Scholar 

  3. Carrillo N, Ceccarelli EA (2003) Open questions in ferredoxin-NADP+ reductase catalytic mechanism. Eur J Biochem 270:1900–1915

    Article  PubMed  CAS  Google Scholar 

  4. Chabrière E, Vernède X, Guigliarelli B, Charon MH, Hatchikian EC, Fontecilla-Camps JC (2001) Crystal structure of the free radical intermediate of pyruvate:ferredoxin oxidoreductase. Science 294:2559–2563

    Article  PubMed  Google Scholar 

  5. Engelmann T, Kaufmann F, Diekert G (2001) Isolation and characterization of a veratrol:corrinoid protein methyl transferase from Acetobacterium dehalogenans. Arch Microbiol 175:376–383

    Article  PubMed  CAS  Google Scholar 

  6. Furukawa K, Suyama A, Tsuboi Y, Futagami T, Goto M (2005) Biochemical and molecular characterization of a tetrachloroethene dechlorinating Desulfitobacterium sp. strain Y51: a review. J Ind Microbiol Biotechnol 32:534–541

    Article  PubMed  CAS  Google Scholar 

  7. Futagami T, Tsuboi Y, Suyama A, Goto M, Furukawa K (2006) Emergence of two types of nondechlorinating variants in the tetrachloroethene-halorespiring Desulfitobacterium sp. strain Y51. Appl Microbiol Biotechnol 70:720–728

    Article  PubMed  CAS  Google Scholar 

  8. Futagami T, Yamaguchi T, Nakayama S, Goto M, Furukawa K (2006) Effects of chloromethanes on growth of and deletion of the pce gene cluster in dehalorespiring Desulfitobacterium hafniense strain Y51. Appl Environ Microbiol 72:5998–6003

    Article  PubMed  CAS  Google Scholar 

  9. Gerritse J, Drzyzga O, Kloetstra G, Keijmel M, Wiersum LP, Hutson R, Collins MD, Gottschal JC (1999) Influence of different electron donors and acceptors on dehalorespiration of tetrachloroethene by Desulfitobacterium frappieri TCE1. Appl Environ Microbiol 65:5212–5221

    PubMed  CAS  Google Scholar 

  10. Hasona A, Kim Y, Healy FG, Ingram LO, Shanmugam KT (2004) Pyruvate formate lyase and acetate kinase are essential for anaerobic growth of Escherichia coli on xylose. J Bacteriol 186:7593–7600

    Article  PubMed  CAS  Google Scholar 

  11. Hrdy I, Muller M (1995) Primary structure and eubacterial relationships of the pyruvate:ferredoxin oxidoreductase of the amitochondriate eukaryote Trichomonas vaginalis. J Mol Evol 41:388–396

    Article  PubMed  CAS  Google Scholar 

  12. Kaufmann F, Wohlfarth G, Diekert G (1998) O-demethylase from Acetobacterium dehalogenans—cloning, sequencing, and active expression of the gene encoding the corrinoid protein. Eur J Biochem 257:515–521

    Article  PubMed  CAS  Google Scholar 

  13. Lemos RS, Gomes CM, Legall J, Xavier AV, Teixeira M (2002) The quinol:fumarate oxidoreductase from the sulphate reducing bacterium Desulfovibrio gigas: spectroscopic and redox studies. J Bioenerg Biomembr 34:21–30

    Article  PubMed  CAS  Google Scholar 

  14. Loffler FE, Tiedje JM, Sanford RA (1999) Fraction of electrons consumed in electron acceptor reduction and hydrogen thresholds as indicators of halorespiratory physiology. Appl Environ Microbiol 65:4049–4056

    PubMed  CAS  Google Scholar 

  15. Lomans BP, Leijdekkers P, Wesselink JJ, Bakkes P, Pol A, Van Der Drift C, Den Camp HJ (2001) Obligate sulfide-dependent degradation of methoxylated aromatic compounds and formation of methanethiol and dimethyl sulfide by a freshwater sediment isolate, Parasporobacterium paucivorans gen. nov., sp. nov. Appl Environ Microbiol 67:4017–4023

    Article  PubMed  CAS  Google Scholar 

  16. Mackiewicz M, Wiegel J (1998) Comparison of energy and growth yields for Desulfitobacterium dehalogenans during utilization of chlorophenol and various traditional electron acceptors. Appl Environ Microbiol 64:352–355

    PubMed  CAS  Google Scholar 

  17. Magnuson JK, Romine MF, Burris DR, Kingsley MT (2000) Trichloroethene reductive dehalogenase from Dehalococcoides ethenogenes: sequence of tceA and substrate range characterization. Appl Environ Microbiol 66:5141–5147

    Article  PubMed  CAS  Google Scholar 

  18. Maillard J, Schumacher W, Vazquez F, Regeard C, Hagen WR, Holliger C (2003) Characterization of the corrinoid iron-sulfur protein tetrachloroethene reductive dehalogenase of Dehalobacter restrictus. Appl Environ Microbiol 69:4628–4638

    Article  PubMed  CAS  Google Scholar 

  19. Major DW, Mcmaster ML, Cox EE, Edwards EA, Dworatzek SM, Hendrickson ER, Starr MG, Payne JA, Buonamici LW (2002) Field demonstration of successful bioaugmentation to achieve dechlorination of tetrachloroethene to ethene. Environ Sci Technol 36:5106–5116

    Article  PubMed  CAS  Google Scholar 

  20. Maymo-Gatell X, Chien Y, Gossett JM, Zinder SH (1997) Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science 276:1568–1571

    Article  PubMed  CAS  Google Scholar 

  21. Mohn WW, Tiedje JM (1990) Catabolic thiosulfate disproportionation and carbon dioxide reduction in strain DCB-1, a reductively dechlorinating anaerobe. J Bacteriol 172:2065–2070

    PubMed  CAS  Google Scholar 

  22. Morita Y, Futagami T, Goto M, Furukawa K (2009) Functional characterization of the trigger factor protein PceT of tetrachloroethene-dechlorinating Desulfitobacterium hafniense Y51. Appl Microbiol Biotechnol 83:775–781

    Article  PubMed  CAS  Google Scholar 

  23. Morris RM, Sowell S, Barofsky D, Zinder S, Richardson R (2006) Transcription and mass-spectroscopic proteomic studies of electron transport oxidoreductases in Dehalococcoides ethenogenes. Environ Microbiol 8:1499–1509

    Article  PubMed  CAS  Google Scholar 

  24. Morris RM, Fung JM, Rahm BG, Zhang S, Freedman DL, Zinder SH, Richardson RE (2007) Comparative proteomics of Dehalococcoides spp. reveals strain-specific peptides associated with activity. Appl Environ Microbiol 73:320–326

    Article  PubMed  CAS  Google Scholar 

  25. Neumann A, Wohlfarth G, Diekert G (1998) Tetrachloroethene dehalogenase from Dehalospirillum multivorans: cloning, sequencing of the encoding genes, and expression of the pceA gene in Escherichia coli. J Bacteriol 180:4140–4145

    PubMed  CAS  Google Scholar 

  26. Neumann A, Engelmann T, Schmitz R, Greiser Y, Orthaus A, Diekert G (2004) Phenyl methyl ethers: novel electron donors for respiratory growth of Desulfitobacterium hafniense and Desulfitobacterium sp. strain PCE-S. Arch Microbiol 181:245–249

    Article  PubMed  CAS  Google Scholar 

  27. Nijenhuis I, Zinder SH (2005) Characterization of hydrogenase and reductive dehalogenase activities of Dehalococcoides ethenogenes strain 195. Appl Environ Microbiol 71:1664–1667

    Article  PubMed  CAS  Google Scholar 

  28. Nonaka H, Keresztes G, Shinoda Y, Ikenaga Y, Abe M, Naito K, Inatomi K, Furukawa K, Inui M, Yukawa H (2006) Complete genome sequence of the dehalorespiring bacterium Desulfitobacterium hafniense Y51 and comparison with Dehalococcoides ethenogenes 195. J Bacteriol 188:2262–2274

    Article  PubMed  CAS  Google Scholar 

  29. Pieulle L, Charon MH, Bianco P, Bonicel J, Petillot Y, Hatchikian EC (1999) Structural and kinetic studies of the pyruvate-ferredoxin oxidoreductase/ferredoxin complex from Desulfovibrio africanus. Eur J Biochem 264:500–508

    Article  PubMed  CAS  Google Scholar 

  30. Pieulle L, Nouailler M, Morelli X, Cavazza C, Gallice P, Blanchet S, Bianco P, Guerlesquin F, Hatchikian EC (2004) Multiple orientations in a physiological complex: the pyruvate-ferredoxin oxidoreductase-ferredoxin system. Biochemistry 43:15480–15493

    Article  PubMed  CAS  Google Scholar 

  31. Pollock JS, Forstermann U, Mitchell JA, Warner TD, Schmidt HH, Nakane M, Murad F (1991) Purification and characterization of particulate endothelium-derived relaxing factor synthase from cultured and native bovine aortic endothelial cells. Proc Natl Acad Sci U S A 88:10480–10484

    Article  PubMed  CAS  Google Scholar 

  32. Prat L, Maillard J, Grimaud R, Holliger C (2011) Physiological adaptation of Desulfitobacterium hafniense strain TCE1 to tetrachloroethene respiration. Appl Environ Microbiol 77:3853–3859

    Article  PubMed  CAS  Google Scholar 

  33. Ragsdale SW (2004) Life with carbon monoxide. Crit Rev Biochem Mol Biol 39:165–195

    Article  PubMed  CAS  Google Scholar 

  34. Rahm BG, Morris RM, Richardson RE (2006) Temporal expression of respiratory genes in an enrichment culture containing Dehalococcoides ethenogenes. Appl Environ Microbiol 72:5486–5491

    Article  PubMed  CAS  Google Scholar 

  35. Schumacher W, Holliger C (1996) The proton/electron ratio of the menaquinone-dependent electron transport from dihydrogen to tetrachloroethene in Dehalobacter restrictus. J Bacteriol 178:2328–2333

    PubMed  CAS  Google Scholar 

  36. Seshadri R, Adrian L, Fouts DE, Eisen JA, Phillippy AM, Methe BA, Ward NL, Nelson WC, Deboy RT, Khouri HM, Kolonay JF, Dodson RJ, Daugherty SC, Brinkac LM, Sullivan SA, Madupu R, Nelson KE, Kang KH, Impraim M, Tran K, Robinson JM, Forberger HA, Fraser CM, Zinder SH, Heidelberg JF (2005) Genome sequence of the PCE-dechlorinating bacterium Dehalococcoides ethenogenes. Science 307:105–108

    Article  PubMed  CAS  Google Scholar 

  37. Smidt H, Song D, Van Der Oost J, De Vos WM (1999) Random transposition by Tn916 in Desulfitobacterium dehalogenans allows for isolation and characterization of halorespiration-deficient mutants. J Bacteriol 181:6882–6888

    PubMed  CAS  Google Scholar 

  38. Smidt H, De Vos WM (2004) Anaerobic microbial dehalogenation. Annu Rev Microbiol 58:43–73

    Article  PubMed  CAS  Google Scholar 

  39. Stevens TO, Tiedje JM (1988) Carbon dioxide fixation and mixotrophic metabolism by strain DCB-1, a dehalogenating anaerobic bacterium. Appl Environ Microbiol 54:2944–2948

    PubMed  CAS  Google Scholar 

  40. Suyama A, Iwakiri R, Kai K, Tokunaga T, Sera N, Furukawa K (2001) Isolation and characterization of Desulfitobacterium sp. strain Y51 capable of efficient dehalogenation of tetrachloroethene and polychloroethanes. Biosci Biotechnol Biochem 65:1474–1481

    Article  PubMed  CAS  Google Scholar 

  41. Suyama A, Yamashita M, Yoshino S, Furukawa K (2002) Molecular characterization of the PceA reductive dehalogenase of Desulfitobacterium sp. strain Y51. J Bacteriol 184:3419–3425

    Article  PubMed  CAS  Google Scholar 

  42. Trieber CA, Rothery RA, Weiner JH (1994) Multiple pathways of electron transfer in dimethyl sulfoxide reductase of Escherichia coli. J Biol Chem 269:7103–7109

    PubMed  CAS  Google Scholar 

  43. Utkin I, Woese C, Wiegel J (1994) Isolation and characterization of Desulfitobacterium dehalogenans gen. nov., sp. nov., an anaerobic bacterium which reductively dechlorinates chlorophenolic compounds. Int J Syst Bacteriol 44:612–619

    Article  PubMed  CAS  Google Scholar 

  44. Vignais PM, Toussaint B (1994) Molecular biology of membrane-bound H2 uptake hydrogenases. Arch Microbiol 161:1–10

    PubMed  CAS  Google Scholar 

  45. Zinder SH, Brock TD (1978) Dimethyl sulfoxide as an electron acceptor for anaerobic growth. Arch Microbiol 116:35–40

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. C. Omumasaba (RITE) for critical reading of the manuscript. This research was supported by New Energy and Industrial Technology Development (NEDO), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideaki Yukawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, X., Yamamoto, S., Vertès, A.A. et al. Global transcriptome analysis of the tetrachloroethene-dechlorinating bacterium Desulfitobacterium hafniense Y51 in the presence of various electron donors and terminal electron acceptors. J Ind Microbiol Biotechnol 39, 255–268 (2012). https://doi.org/10.1007/s10295-011-1023-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-011-1023-7

Keywords

Navigation