Skip to main content
Log in

Pseudoxanthomonas bacteria that drive deposit formation of wood extractives can be flocculated by cationic polyelectrolytes

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Runnability problems caused by suspended bacteria in water using industries, have, in contrast to biofilms, received little attention. We describe here that Pseudoxanthomonas taiwanensis, a wide-spread and abundant bacterium in paper machine water circuits, aggregated dispersions of wood extractives ("pitch") and resin acid, under conditions prevailing in machine water circuits (109 cfu ml−1, pH 8, 45°C). The aggregates were large enough (up to 50 μm) so that they could be expected to clog wires and felts and to reduce dewatering of the fiber web. The Pseudoxanthomonas bacteria were negatively charged over a pH range of 3.2–10. Cationic polyelectrolytes of the types used as retention aids or fixatives to flocculate "anionic trash" in paper machines were effective in flocculating the Pseudoxanthomonas bacteria. The polyelectrolyte most effective for this purpose was of high molecular weight (7–8 × 106 g mol−1) and low charge density (1 meq g−1), whereas polyelectrolytes that effectively zeroed the electrophoretic mobility (i.e., neutralized the negative charge) of the bacterium were less effective in flocculating the bacteria. Based on the results, we concluded that the polyelectrolytes functioning by bridging mechanism, rather than by neutralization of the negative charge, may be useful as tools for reducing harmful deposits resulting from interaction of bacteria with wood extractives in warm water industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Asselman T, Garnier G (2000) Dynamics of polymer-induced hetero-flocculation of wood fibres and fines. Colloids Surf A 174:297–306

    Article  CAS  Google Scholar 

  2. Blanco MA, Negro C, Gaspar I, Tijero J (1996) Slime problems in the paper and board industry. Appl Microbiol Biotechnol 46:203–208

    Article  CAS  Google Scholar 

  3. Bobacka V, Eklund D (1999) The influence of charge of cationic starch on dissolved and colloidal material from peroxide bleached thermomechanical pulp. Colloids Surf A 152:285–291

    Article  CAS  Google Scholar 

  4. Bordes C, Garcia F, Snabre P, Frances C (2002) On-line characterization of particle size during an ultrafine wet grinding process. Powder Tech 128:218–228

    Article  CAS  Google Scholar 

  5. Buron H, Mengual O, Meunier G, Cayré I, Snabre P (2004) Review optical characterization of concentrated dispersions: applications to laboratory analyses and on-line process monitoring and control. Polym Int 53:1205–1209. doi:10.1002/pi.1231

    Article  CAS  Google Scholar 

  6. Eriksson LB, Härdin A-M (1987) Flocculation of E. coli bacteria with cationic flocculants. In: Attia YA (ed) Flocculation in biotechnology and separation systems. Elsevier, Amsterdam, pp 441–455

    Google Scholar 

  7. Glazer JA (1991) Overview of deposit control. Tappi J 74(7):72–74

    CAS  Google Scholar 

  8. Gregory J (1993) The role of colloid interactions in solid-liquid separation. War Sci Tech 27(10):1–17

    CAS  Google Scholar 

  9. Haapala A, Liimatainen H, Körkkö M, Ekman J, Salkinoja-Salonen M, Niinimäki J (2010) Web defects in newsprint production—a mill case study. Appita J 63(5):358–363, 398

    Google Scholar 

  10. Hubbe M, Rojas OJ, Venditti RA (2006) Control of tacky deposits on paper machines–a review. Nord Pulp Pap Res J 21(2):154–171

    Article  CAS  Google Scholar 

  11. Hughes J, Ramsden DK, Symes KC (1990) The flocculation of bacteria using cationic synthetic flocculants and chitosan. Biotechnol Tech 4(1):55–60

    Article  CAS  Google Scholar 

  12. Hunter RJ (1981) Zeta potential in colloid science principles and applications. Academic Press, London

  13. Jucker BA, Harms H, Zehnder AJB (1998) Polymer interactions between five Gram-negative bacteria and glass investigating using LPS micelles and vesicles as model systems. Colloids Surf B 11:33–45

    Article  CAS  Google Scholar 

  14. Kabanov VA, Zezin AB (1984) Soluble interpolymeric complexes as a new class of synthetic polyelectrolytes. Pure Appl Chem 56(3):343–354

    Article  CAS  Google Scholar 

  15. Kersten PJ, Kopper BJ, Raffa KF, Illman BL (2006) Rapid analysis of abietanes in conifers. J Chem Ecol 32:2679–2685

    Article  PubMed  CAS  Google Scholar 

  16. Kim C, Jung H, Kim JH, Shin CS (2006) Effect of monascus pigment derivates on the electrophoretic mobility of bacteria, and the cell adsorption and antibacterial activities of pigments. Colloids Surf B 47:153–159

    Article  CAS  Google Scholar 

  17. Kolari M, Nuutinen J, Rainey FA, Salkinoja-Salonen MS (2003) Colored moderately thermophilic bacteria in paper-machine biofilms. J Ind Microbiol Biotechnol 30:225–238

    PubMed  CAS  Google Scholar 

  18. Kolari M, Nuutinen J, Salkinoja-Salonen MS (2001) Mechanism of biofilm formation in paper machine by Bacillus species: the role of Deinococcus geothermalis. J Ind Microbiol Biotechnol 27:343–351. doi:10.1007/s10295-003-0047-z

    Article  PubMed  CAS  Google Scholar 

  19. Lahtinen T, Kosonen M, Tiirola M, Vuento M, Oker-Blom C (2006) Diversity of bacteria contaminating paper machines. J Ind Microbiol Biotechnol 33:734–740. doi:10.1007/s10295-006-0105-4

    Article  PubMed  CAS  Google Scholar 

  20. Lindberg LE, Vähäsalo LJ, Holmbom BR (2004) Flow cytometry of bacteria and wood resin particles in paper production. Nord Pulp Pap Res J 19(4):412–416

    Article  CAS  Google Scholar 

  21. Mattila K, Weber A, Salkinoja-Salonen MS (2002) Structure and on-site formation of biofilms in paper machine water flow. J Ind Microbiol Biotechnol 28:268–279. doi:10.1038/sj/jim/7000242

    Article  PubMed  CAS  Google Scholar 

  22. Prince V, Simao-Beaunoir A-M, Beaulieu C (2009) Amplified ribosomal DNA restriction analysis of free-living bacteria present in the headbox of a Canadian paper machine. Can J Microbiol 55:810–817

    Article  PubMed  CAS  Google Scholar 

  23. Rijnaarts HHM, Norde W, Lyklema J, Zehnder AJB (1995) The isoelectric point of bacteria as an indicator for the presence of cell surface polymers that inhibit adhesion. Colloids Surf B 4:191–197

    Article  CAS  Google Scholar 

  24. Sihvonen A-L, Sundberg K, Sunberg A, Holmbom B (1998) Stability and deposition tendency of colloidal wood resin. Nord Pulp Pap Res J 13(1):64–67

    Article  CAS  Google Scholar 

  25. Suihko M-L, Sinkko H, Partanen L, Mattila-Sandholm T, Salkinoja-Salonen M, Raaska L (2004) Description of heterotrophic bacteria occurring in paper mills and paper products. J Appl Microbiol 97:1228–1235. doi:10.1111/j.1365-2672.2004.02416.x

    Article  PubMed  CAS  Google Scholar 

  26. Suihko ML, Skyttä E (2009) Characterization of aerobically grown non-spore-forming bacteria from paper mill pulps containing recycled fibres. J Ind Microbiol Biotechnol 36:53–64. doi:10.1007/s10295-008-0472-0

    Article  PubMed  CAS  Google Scholar 

  27. Sundberg A, Ekman R, Holmbom B, Sundberg K, Thornton J (1993) Interactions between dissolved and colloidal substances and a cationic fixing agents in mechanical pulp suspensions. Nord Pulp Pap Res J 1:226–231

    Article  Google Scholar 

  28. Sundberg K, Pettersson C, Eckerman C, Holmbom B (1996) Preparation and properties of a model dispersion of colloidal wood resin from Norway spruce. J Pulp Paper Sci 22(7):J248–J252

    Google Scholar 

  29. Sundberg K, Thornton J, Holmbom B, Ekman R (1996) Effects of wood polysaccharides on the stability of colloidal wood resin. J Pulp Paper Sci 22(7):J226–J230

    Google Scholar 

  30. Tammelin T, Merta J, Johansson L-S, Stenius P (2004) viscoelastic properties of cationic starch adsorbed on quartz studied by QCM-D. Langmuir 20(25):10900–10909

    Article  PubMed  CAS  Google Scholar 

  31. Tiirola M, Lahtinen T, Vuento M, Oker-Blom C (2009) Early succession of bacterial biofilms in paper machines. J Ind Microbiol Biotechnol 36:929–937. doi:10.1007/s10295-009-0571-6

    Article  PubMed  CAS  Google Scholar 

  32. Tomlin ES, Antonejevic E, Alfaro RI, Borden JH (2000) Changes in volatile terpene and diterpene resin acid composition of resistant and susceptible white spruce leaders exposed to simulated white pine weevil damage. Tree Physiol 20:1087–1095

    PubMed  CAS  Google Scholar 

  33. Väisänen OM, Weber A, Bennasar A, Rainey FA, Busse H-J, Salkinoja-Salonen MS (1998) Microbial communities of printing paper machines. J Appl Microbiol 84(6):1069–1084

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by TEKES (Finnish Funding Agency for Technology and Innovation, 783/31/07), Oy Keskuslaboratorio-Centrallaboratorium Ab (VTT Technical Research Centre of Finland), Metso Paper Oy, Kemira Oyj, Tamfelt Oyj Abp (Metso Fabrics Oy), Savcor Forest Oy, Fastpap Oy Ab and Millidyne Oy. Academy of Finland grant (118637) "Photobiomics" for the Centre of Excellence is acknowledged. Marja Kärkkäinen is thanked for the technical assistance. Tuula Suortti, Leena Steininger and Hannele Tukiainen are thanked for many kinds of help. Kati Mäenpää and Viikki Science library are acknowledged for the information services and the Faculty of Agr. and For. Instrument Centre for Technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taina Leino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leino, T., Raulio, M., Stenius, P. et al. Pseudoxanthomonas bacteria that drive deposit formation of wood extractives can be flocculated by cationic polyelectrolytes. J Ind Microbiol Biotechnol 39, 105–114 (2012). https://doi.org/10.1007/s10295-011-1005-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-011-1005-9

Keywords

Navigation