Skip to main content
Log in

Characterization of extracellular esterase and lipase activities from five halophilic archaeal strains

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

A total of 118 halophilic archaeal collection of strains were screened for lipolytic activity and 18 of them were found positive on Rhodamine agar plates. The selected five isolates were further characterized to determine their optimum esterase and lipase activities at various ranges of salt, temperature and pH. The esterase and lipase activities were determined by the hydrolysis of pNPB and pNPP, respectively. The maximum hydrolytic activities were found in the supernatants of the isolates grown at complex medium with 25% NaCl and 1% gum Arabic. The highest esterase activity was obtained at pH 8–8.5, temperature 60–65°C and NaCl 3–4.5 M. The same parameters for the highest lipase activities were found to be pH 8, temperature 45–65°C and NaCl 3.5–4 M. These results indicate the presence of salt-dependent and temperature-tolerant lipolytic enzymes from halophilic archaeal strains. Kinetic parameters were determined according to Lineweaver–Burk plot. The KM and V max values were lower for pNPP hydrolysis than those for pNPB hydrolysis. The results point that the isolates have higher esterase activity comparing to lipase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bhatnagar T, Boutaiba S, Hacene H, Cayol JL, Fardeau ML, Olliver B, Baratti JC (2005) Lipolytic activity from halobacteria: screening and hydrolyses production. FEMS Microbiol Lett 248:133–140. doi:10.1016/j.femsle.2005.05.044

    Article  PubMed  CAS  Google Scholar 

  2. Boutaiba S, Bhatnagar T, Hacene H, Mitchell DA, Baratti JC (2006) Preliminary characterisation of a lipolytic activity from an extremely halophilic archaeaon, Natronococcus sp. J Mol Catal B Enzym 41:21–26. doi:10.1016/j.molcatb.2006.03.010

    Article  CAS  Google Scholar 

  3. Chaga G, Porath J, Illeni T (1993) Isolation and purification of amyloglucosidase from Halobacterium sodomonse. Biomed Chromatogr 7:256–261. doi:10.1002/bmc.1130070504

    Article  PubMed  CAS  Google Scholar 

  4. Copeland RA (2000) Enzymes: a pratical introduction to structure, mechanism, and data analysis, 2nd edn. Wiley, New York

    Google Scholar 

  5. Corzo G, Revah S (1999) Production and characteristics of the lipase from Yarrowia lipolytica 681. Bioresour Technol 70:173–180. doi:10.1016/S0960-8524(99)00024-3

    Article  CAS  Google Scholar 

  6. Dym O, Mevarech M, Sussman JL (1995) Structural features that stabilize halophilic malate dehydrogenase from archaebacterium. Science 267:1344–1346. doi:10.1126/science.267.5202.1344

    Article  PubMed  CAS  Google Scholar 

  7. Egorova K, Antranikian G (2005) Industry relevance of thermophilic archaea. Curr Opin Microbiol 8:1–7. doi:10.1016/j.mib.2004.12.015

    Article  Google Scholar 

  8. Gandolfi R, Marinelli F, Lazzarini A, Molinari F (2000) Cell-bound and extracellular carboxylesterases from Streptomyces: hydrolytic and synthetic activities. J Appl Microbiol 89:870–875. doi:10.1046/j.1365-2672.2000.01194.x

    Article  PubMed  CAS  Google Scholar 

  9. Hough DW, Danson DJ (1999) Extremozymes. Curr Opin Chem Biol 3:39–46. doi:10.1016/S1367-5931(99)80008-8

    Article  PubMed  CAS  Google Scholar 

  10. Ikeda M, Clark DS (1998) Molecular cloning of extremely thermostable esterase gene from hyperthermophilic archaeon Pyrococcus furiosus in Escherichia coli. Biotechnol Bioeng 57:624–629 doi :10.1002/(SICI)1097-0290(19980305)57:5<624::AID-BIT15>3.0.CO;2-B

    Article  PubMed  CAS  Google Scholar 

  11. Izotova LS, Strongin AY, Chekulaeva LN, Sterkin VE, Ostoslavskaya VI, Lyublinskaya LA, Timokhina EA, Stepanov VM (1983) Purification and properties of serine protease from Halobacterium halobium. J Bacteriol 155:826–830

    PubMed  CAS  Google Scholar 

  12. Kouker G, Jaeger KE (1987) Spesific and sensitive plate assay for bacterial lipase. Appl Environ Microbiol 53:211–213

    PubMed  CAS  Google Scholar 

  13. Kordel M, Hofmann B, Schomburg D, Schmid RD (1991) Extracellular lipase of Pseudomonas sp. Strain ATCC 21808: purification, characterization, crystallization, and preliminary X-ray diffraction data. J Bacteriol 173:4836–4841

    PubMed  CAS  Google Scholar 

  14. Margesin R, Schinner F (2001) Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 5:73–83. doi:10.1007/s007920100184

    Article  PubMed  CAS  Google Scholar 

  15. Martin S, Marquez MC, Sanchez-Porro C, Maellado E, Arahal DR, Ventosa A (2003) Marinobacter lipolyticus sp. nov., a novel moderate halophile with lipolytic activity. Int J Syst Evol Microbiol 53:1383–1387. doi:10.1099/ijs.0.02528-0

    Article  PubMed  CAS  Google Scholar 

  16. Matsumoto T, Ito M, Fukuda H, Kondo A (2004) Enantioselective transesterification using lipase-displaying yeast whole-cell biocatalyst. Appl Microbiol Biotechnol 64:481–485. doi:10.1007/s00253-003-1486-1

    Article  PubMed  CAS  Google Scholar 

  17. Oren A (2001) The order Halobacteriales. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. A handbook on the biology of bacteria: ecophysiology, isolation, identification, applications, 3rd edn. Springer, New York

    Google Scholar 

  18. Oren A (2002) Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biotechnol 28:56–63

    Article  PubMed  CAS  Google Scholar 

  19. Ozcan B, Cokmus C, Coleri A, Caliskan M (2006) Characterization of extremely halophilic archaea isolated from saline environment in different parts of Turkey. Microbiology 75:739–746. doi:10.1134/S002626170606018X

    Article  CAS  Google Scholar 

  20. Ozcan B, Ozcengiz G, Coleri A, Cokmus C (2007) Diversity of halophilic archaea from six distinct parts of Turkey. J Microbiol Biotechnol 17:985–992

    PubMed  CAS  Google Scholar 

  21. Panda T, Gowrishankar BS (2005) Production and applications of esterases. Appl Microbiol Biotechnol 67:160–169. doi:10.1007/s00253-004-1840-y

    Article  PubMed  CAS  Google Scholar 

  22. Perez-Pomares F, Bautista V, Ferrer J, Pire C, Marhuenda-Egea FC, Bonete MJ (2003) α-Amylase activity from the halophilic archaeon Haloferax mediterranei. Extremophiles 7:299–306. doi:10.1007/s00792-003-0327-6

    Article  PubMed  CAS  Google Scholar 

  23. Rodriguez-Valera F (1992) Biotechnol potential of halobacteria. Biochem Soc Symp 58:135–147

    PubMed  CAS  Google Scholar 

  24. Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409:1092–1101. doi:10.1038/35059215

    Article  PubMed  CAS  Google Scholar 

  25. Ryu K, Kim J, Dordick JS (1994) Catalytic properties and potential of an extracellular protease from an extreme halophile. Enzyme Microb Technol 16:266–275. doi:10.1016/0141-0229(94)90165-1

    Article  PubMed  CAS  Google Scholar 

  26. Sanchez-Porro C, Martin S, Mellado E, Ventosa A (2003) Diversity of moderately halophilic bacteria producing extracellular hydrolytic enzymes. J Appl Microbiol 94:295–300. doi:10.1046/j.1365-2672.2003.01834.x

    Article  PubMed  CAS  Google Scholar 

  27. Tamerler CB, Martinez AT, Keshavarz T (2001) Production of lipolytic enzymes in batch cultures of Ophiostoma piceae. J Chem Technol Biotechnol 76:991–996. doi:10.1002/jctb.473

    Article  CAS  Google Scholar 

  28. Teo JWP, Zhang LH, Poh CL (2003) Cloning and characterization of a novel lipase from Vibrio harveyi strain AP6. Gene 312:181–188. doi:10.1016/S0378-1119(03)00615-2

    Article  PubMed  CAS  Google Scholar 

  29. Vargas VA, Delgado OD, Hatti-Kaul R, Mattiosson B (2004) Lipase-producing microorganisms from a Kenyan alkaline soda lake. Biotechnol Lett 26:81–86. doi:10.1023/B:BILE.0000012898.50608.12

    Article  PubMed  CAS  Google Scholar 

  30. Ventosa A, Nieto JJ (1995) Biotechnological applications and potentialities of halophilic microorganisms. World J Microbiol Biotechnol 11:85–94. doi:10.1007/BF00339138

    Article  CAS  Google Scholar 

  31. Waino M, Ingvorsen K (2003) Production of b-xylanase and b-xylosidase by the extremelyhalophilic archaeon Halorhabdus utahensis. Extremophiles 7:87–93

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Research Project Units of Mustafa Kemal University (project number 06 F 302) and in part by the Scientific and Technical Research Council of Turkey (TUBITAK) (project numbers 105T041 and 107T919).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birgul Ozcan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ozcan, B., Ozyilmaz, G., Cokmus, C. et al. Characterization of extracellular esterase and lipase activities from five halophilic archaeal strains. J Ind Microbiol Biotechnol 36, 105–110 (2009). https://doi.org/10.1007/s10295-008-0477-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-008-0477-8

Keywords

Navigation