Skip to main content
Log in

Integer-estimable GLONASS FDMA model as applied to Kalman-filter-based short- to long-baseline RTK positioning

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

Fast ambiguity resolution is a major challenge for GLONASS phase-based applications. The integer-estimable frequency-division multiple-access (IE-FDMA) model succeeds in formulating a set of estimable GLONASS phase ambiguities and preserving the integer property, to which the classical integer ambiguity resolution, typically the least-squares ambiguity decorrelation adjustment (LAMBDA), becomes readily applicable. The initial assessment of the IE-FDMA model demonstrated instantaneous ambiguity resolution capability in case of short-baseline real-time kinematic (RTK) positioning based on ionosphere-fixed formulation, in which the data processing strategy is window (batch)-based least-squares estimation with window length ranging from one to a few epochs. Here, we extend the applicability of the IE-FDMA model to Kalman-filter-based, ionosphere-fixed, ionosphere-weighted, and ionosphere-free cases, which are, respectively, adoptable for short-, medium-, and long-baseline RTK positioning. To adapt the IE-FDMA model to the Kalman filter, we estimate, at each epoch, first the estimable ambiguities, then transform them into integer-estimable ones, and finally resolve them into correct integers. This enables the rigorous integer ambiguity resolution and, at the same time, eases the recursive construction of integer-estimable ambiguities. We analyze global positioning system (GPS) and GLONASS data of nine baselines with lengths varying from several meters to more than one hundred kilometers. The results demonstrate the feasibility of fast ambiguity resolution not only for the GLONASS phase-only short-baseline RTK positioning, but for the GPS + GLONASS medium- and long-baseline RTK positioning as well. In all cases, the fixed solution with faster (several-minutes) convergence and higher (centimeter-level) precision indicates the benefits from GLONASS ambiguity resolution as compared to the float solution. Moreover, the dual-system solution with decreased ambiguity dilution of precision (ADOP) and improved positioning precision confirms the advantages of integrating GLONASS with GPS in contrast to the GPS-only situation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

RINEX data collected in Perth, Australia can be accessed at https://saegnss2.curtin.edu.au/ldc/; RINEX data acquired from the National Geodetic Survey (NGS) CORS network in the United States (US) can be downloaded at ftp://geodesy.noaa.gov/cors/; RINEX data collected in Wuhan, China can be obtained at https://pan.baidu.com/s/1iacpGNmDHgg9JboKiGl_7w (Extraction code: 3r2l).

References

  • Aggrey J, Bisnath S (2016) Dependence of GLONASS pseudorange inter-frequency bias on receiver-antenna combination and impact on precise point positioning. Navigation 63(4):379–391

    Article  Google Scholar 

  • Banville S, Collins P, Lahaye F (2018) Model comparison for GLONASS RTK with low-cost receivers. GPS Solut 22(2):52. https://doi.org/10.1007/s10291-018-0712-3

    Article  Google Scholar 

  • Bona P (2000) Precision, cross correlation, and time correlation of GPS phase and code observations. GPS Solut 4(2):3–13

    Article  Google Scholar 

  • Euler HJ, Goad CC (1991) On optimal filtering of GPS dual frequency observations without using orbit information. Bull Géod 65(2):130–143

    Article  Google Scholar 

  • Geng J, Zhao Q, Shi C, Liu J (2017) A review on the inter-frequency biases of GLONASS carrier-phase data. J Geodesy 91(3):329–340

    Article  Google Scholar 

  • Hakansson M, Jensen ABO, Horemuz M, Hedling G (2017) Review of code and phase biases in multi-GNSS positioning. GPS Solut 21(3):849–860

    Article  Google Scholar 

  • Hou P, Zhang B, Yuan Y, Zhang X, Zha J (2019) Stochastic modeling of BDS2/3 observations with application to RTD/RTK positioning. Meas Sci Technol 30(9):095002. https://doi.org/10.1088/1361-6501/ab1fad

    Article  Google Scholar 

  • Khodabandeh A, Teunissen PJG (2019) Integer estimability in GNSS networks. J Geodesy 93(9):1805–1819. https://doi.org/10.1007/s00190-019-01282-6

    Article  Google Scholar 

  • Koch KR (1999) Parameter estimation and hypothesis testing in linear models. Springer, Berlin

    Book  Google Scholar 

  • Leick A (1998) GLONASS satellite surveying. J Surv Eng 124(2):91–99

    Article  Google Scholar 

  • Leick A, Rapoport L, Tatarnikov D (2015) GPS satellite surveying. Wiley, Hoboken

    Book  Google Scholar 

  • Li B (2016) Stochastic modeling of triple-frequency BeiDou signals: estimation, assessment and impact analysis. J Geodesy 90(7):593–610

    Article  Google Scholar 

  • Li B, Shen Y, Xu P (2008) Assessment of stochastic models for GPS measurements with different types of receivers. Chin Sci Bull 53(20):3219–3225

    Google Scholar 

  • Odijk D (2003) Ionosphere-Free phase combinations for modernized GPS. J Surv Eng 129(4):165–173

    Article  Google Scholar 

  • Odijk D, Teunissen PJG (2008) ADOP in closed form for a hierarchy of multi-frequency single-baseline GNSS models. J Geodesy 82(8):473

    Article  Google Scholar 

  • Odolinski R, Teunissen PJG (2017) Low-cost, high-precision, single-frequency GPS-BDS RTK positioning. GPS Solut 21(3):1315–1330

    Article  Google Scholar 

  • Odolinski R, Teunissen PJG, Odijk D (2015) Combined GPS + BDS for short to long baseline RTK positioning. Meas Sci Technol 26(4):045801

    Article  Google Scholar 

  • Schaffrin B, Bock Y (1988) A unified scheme for processing GPS dual-band phase observations. Bull Geod 62(2):142–160

    Article  Google Scholar 

  • Sleewaegen JSA, Wilde W, Boon F, Willems T (2012) Demystifying GLONASS inter-frequency carrier phase biases. Inside GNSS 7(3):57–61

    Google Scholar 

  • Takac T (2009) GLONASS inter-frequency biases and ambiguity resolution. Inside GNSS 4(2):24–28

    Google Scholar 

  • Teunissen PJG (1995) The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation. J Geodesy 70(1–2):65–82

    Article  Google Scholar 

  • Teunissen PJG (1997) A canonical theory for short GPS baselines. J Geodesy 71(6):320–336

    Article  Google Scholar 

  • Teunissen PJG (1998) The Ionosphere-weighted GPS baseline precision in canonical form. J Geodesy 72(2):107–111

    Article  Google Scholar 

  • Teunissen PJG (2001) Integer estimation in the presence of biases. J Geodesy 75(7–8):399–407

    Article  Google Scholar 

  • Teunissen PJG (2003) Theory of integer equivariant estimation with application to GNSS. J Geodesy 77(7–8):402–410

    Article  Google Scholar 

  • Teunissen PJG (2019) A new GLONASS FDMA model. GPS Solut 23(4):100. https://doi.org/10.1007/s10291-019-0889-0

    Article  Google Scholar 

  • Teunissen PJG, Joosten P, Odijk D (1999) The reliability of GPS ambiguity resolution. GPS Solut 2(3):63–69

    Article  Google Scholar 

  • Teunissen PJG, Khodabandeh A (2019) GLONASS ambiguity resolution. GPS Solut 23(4):101. https://doi.org/10.1007/s10291-019-0890-7

    Article  Google Scholar 

  • Teunissen PJG, Kleusberg A (2012) GPS for geodesy. Springer, Berlin

    Google Scholar 

  • Teunissen PJG, Montenbruck O (2017) Springer handbook of global navigation satellite systems. Springer, Berlin

    Book  Google Scholar 

  • Tian Y, Ge M, Neitzel F (2015) Particle filter-based estimation of inter-frequency phase bias for real-time GLONASS integer ambiguity resolution. J Geodesy 89(11):1145–1158

    Article  Google Scholar 

  • Wang J, Rizos C, Stewart MP, Leick A (2001) GPS and GLONASS integration: modeling and ambiguity resolution issues. GPS Solut 5(1):55–64

    Article  Google Scholar 

  • Wang K, Khodabandeh A, Teunissen PJG (2018) Five-frequency Galileo long-baseline ambiguity resolution with multipath mitigation. GPS Solut 22(3):75. https://doi.org/10.1007/s10291-018-0738-6

    Article  Google Scholar 

  • Wanninger L (2012) Carrier-phase inter-frequency biases of GLONASS receivers. J Geodesy 86(2):139–148

    Article  Google Scholar 

  • Yao Y, Hu M, Xu X, He Y (2017) GLONASS inter-frequency phase bias rate estimation by single-epoch or Kalman filter algorithm. GPS Solut 21(4):1871–1882

    Article  Google Scholar 

  • Zhang B, Hou P, Liu T, Yuan Y (2020) A single-receiver geometry-free approach to stochastic modeling of multi-frequency GNSS observables. J Geodesy 94(4):37. https://doi.org/10.1007/s00190-020-01366-8

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially funded by the National Natural Science Foundation of China (No. 41774042), the BDS Industrialization Project (No. GFZX030302030201-2), the Scientific Instrument Developing Project of the Chinese Academy of Sciences (No. YJKYYQ20190063), and the National Key Research Program of China Collaborative Precision Positioning Project (No. 2016YFB0501900). The second author is supported by the CAS Pioneer Hundred Talents Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baocheng Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, P., Zhang, B. & Liu, T. Integer-estimable GLONASS FDMA model as applied to Kalman-filter-based short- to long-baseline RTK positioning. GPS Solut 24, 93 (2020). https://doi.org/10.1007/s10291-020-01008-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10291-020-01008-8

Keywords

Navigation