Skip to main content
Log in

Generation of Assimilated Indian Regional Vertical TEC Maps

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

Regional ionospheric total electron content maps have become a prominent tool for understanding the dynamic behavior of the ionosphere. In recent times, ionospheric data assimilation methods have enhanced the prediction capabilities of global ionospheric models by embedding several standalone ionospheric remote sensing observations. In this study, an attempt is made to generate hourly Assimilated Indian Regional Vertical Total Electron Content (AIRAVAT) Maps by the process of data assimilation using the Kalman filter exclusively for the Indian region (longitude: 65° to 100°; latitude: 5° to 40°). Observations from the ground-based Global Positioning System aided Geo-Stationary Orbit Augmented Network and radio occultations from the space-based Constellation Observing System for Meteorology, Ionosphere, and Climate are introduced into the global ionospheric map developed by the Centre for Orbit Determination in Europe with a temporal resolution of 1 h. The AIRAVAT maps are created for a day of quiet (September 16, 2016) and disturbed (October 25, 2016) geomagnetic conditions. A new methodology is provided for the covariance matrix of initial background model errors through multivariate principal component analysis of solar and geomagnetic parameters. The equatorial ionization anomaly features are clearly captured in the developed AIRAVAT maps by using both the updated and forecasted steps of the Kalman filter. The AIRAVAT model is validated with an independent GNSS receiver through root-mean-square error analysis for both quiet and disturbed geomagnetic conditions to showcase the efficiency of the model. The quiet day RMSEs between the estimated TEC of proposed AIRAVAT model and the true data are approximately 2 TECU and 2.66 TECU for a disturbed day, respectively. The proposed AIRAVAT maps are useful for monitoring the impact of ionospheric space weather on satellite-based navigation and communication systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aa E, Huang W, Yu S, Liu S, Shi L, Gong J, Chen Y, Shen H (2015) A regional ionospheric TEC mapping technique over China and adjacent areas on the basis of data assimilation. J Geophys Res Space Phys 120(6):5049–5061

    Article  Google Scholar 

  • Aa E, Liu S, Huang W, Shi L, Gong J, Chen Y, Shen H, Li J (2016) Regional 3-D ionospheric electron density specification on the basis of data assimilation of ground-based GNSS and radio occultation data. Space Weather 14(6):433–448

    Article  Google Scholar 

  • Bilitza D, Altadill D, Truhlik V, Shubin V, Galkin I, Reinisch B, Huang X (2017) International Reference Ionosphere 2016: from ionospheric climate to real-time weather predictions. Space Weather 15(2):418–429

    Article  Google Scholar 

  • Bust G, Garner T, Gaussiran T (2004) Ionospheric data assimilation three-dimensional (IDA3D): a global, multisensor, electron density specification algorithm. J Geophys Res Space Phys 109(A11):312

    Article  Google Scholar 

  • Chartier AT, Matsuo T, Anderson JL, Collins N, Hoar TJ, Lu G, Mitchell CN, Coster AJ, Paxton LJ, Bust GS (2016) Ionospheric data assimilation and forecasting during storms. J Geophys Res Space Phys 121(1):764–778

    Article  Google Scholar 

  • Chen CH, Lin C, Chen WH, Matsuo T (2017) Modeling the ionospheric prereversal enhancement by using coupled thermosphere-ionosphere data assimilation. Geophys Res Lett 44(4):1652–1659

    Article  Google Scholar 

  • Cheng CZF, Kuo YH, Anthes RA, Wu L (2006) Satellite constellation monitors global and space weather. Eos Trans Am Geophys Union 87(17):166

    Article  Google Scholar 

  • Feltens J (2007) Development of a new three-dimensional mathematical ionosphere model at European Space Agency/European Space Operations Centre. Space Weather 5(12):1–17

    Article  Google Scholar 

  • Fong CJ, Huang CY, Chu V, Yen N, Kuo YH, Liou YA, Chi S (2008a) Mission results from FORMOSAT-3/COSMIC constellation system. J Spacecr Rockets 45(6):1293–1302

    Article  Google Scholar 

  • Fong CJ, Shiau WT, Lin CT, Kuo TC, Chu CH, Yang SK, Yen NL, Chen SS, Kuo YH, Liou YA, Chi S (2008b) Constellation deployment for the FORMOSAT-3/COSMIC mission. IEEE Trans Geosci Remote Sens 46(11):3367–3379

    Article  Google Scholar 

  • Fong CJ, Yang SK, Chu CH, Huang CY, Yeh JJ, Lin CT, Kuo TC, Liu TY, Yen NL, Chen SS, Kuo YH (2008c) FORMOSAT-3/COSMIC constellation spacecraft system performance: after one year in orbit. IEEE Trans Geosci Remote Sens 46(11):3380–3394

    Article  Google Scholar 

  • Gardner L, Schunk R, Scherliess L, Sojka J, Zhu L (2014) Global assimilation of Ionospheric measurements-Gauss Markov model: improved specifications with multiple data types. Space Weather 12(12):675–688

    Article  Google Scholar 

  • Gaspari G, Cohn SE (1999) Construction of correlation functions in two and three dimensions. Q J Royal Meteorol Soc 125(554):723–757

    Article  Google Scholar 

  • Goncharenko LP, Chau J, Liu HL, Coster A (2010) Unexpected connections between the stratosphere and ionosphere. Geophys Res Lett 37(L10101):1–6

    Google Scholar 

  • Immel TJ, England SL, Zhang X, Forbes JM, DeMajistre R (2009) Upward propagating tidal effects across the E-and F-regions of the ionosphere. Earth Planets Space 61(4):505–512

    Article  Google Scholar 

  • Jolliffe IT, Cadima J (2016) Principal component analysis: a review and recent developments. Philos Trans R Soc A Math Phys Eng Sci 374(2065):20150202

    Article  Google Scholar 

  • Kassa T, Damtie B, Bires A, Yizengaw E, Cilliers P (2015) Storm-time characteristics of the equatorial ionization anomaly in the East African sector. Adv Space Res 56(1):57–70

    Article  Google Scholar 

  • Komjathy A, Wilson B, Pi X, Akopian V, Dumett M, Iijima B, Verkhoglyadova O, Mannucci AJ (2010) JPL/USC GAIM: On the impact of using COSMIC and ground-based GPS measurements to estimate ionospheric parameters. J Geophys Res Space Phys 115(A2):1–10

    Article  Google Scholar 

  • Lee IT, Matsuo T, Richmond AD, Liu JY, Wang W, Lin CH, Anderson JL, Chen MQ (2012) Assimilation of FORMOSAT-3/COSMIC electron density profiles into a coupled thermosphere/ionosphere model using ensemble Kalman filtering. J Geophys Res Space Phys 117(A10):1–12

    Article  Google Scholar 

  • Lee I, Tsai H, Liu J, Lin CH, Matsuo T, Chang L (2013) Modeling impact of FORMOSAT-7/COSMIC-2 mission on ionospheric space weather monitoring. J Geophys Res Space Phys 118(10):6518–6523

    Article  Google Scholar 

  • Lin CH, Liu JY, Fang TW, Chang PY, Tsai HF, Chen CH, Hsiao CC (2007) Motions of the equatorial ionization anomaly crests imaged by FORMOSAT-3/COSMIC. Geophys Res Lett 34(L19101):1–6

    Google Scholar 

  • Lin C, Matsuo T, Liu J, Lin C, Tsai H, Araujo-Pradere E (2015) Ionospheric assimilation of radio occultation and ground-based GPS data using non-stationary background model error covariance. Atmos Meas Tech 8(1):171–182

    Article  Google Scholar 

  • Lin C, Matsuo T, Liu J, Lin C, Huba J, Tsai H, Chen C (2017) Data assimilation of ground-based GPS and radio occultation total electron content for global ionospheric specification. J Geophys Res Space Phys 122(10):10876–10886

    Article  Google Scholar 

  • Liu L, Le H, Chen Y, He M, Wan W, Yue X (2011) Features of the middle-and low-latitude ionosphere during solar minimum as revealed from COSMIC radio occultation measurements. J Geophys Res Space Phys 116(A09):1–11

    Google Scholar 

  • Mannucci A, Wilson B, Yuan D, Ho C, Lindqwister U, Runge T (1998) A global mapping technique for GPS-derived ionospheric total electron content measurements. Radio Sci 33(3):565–582

    Article  Google Scholar 

  • Pi X, Wang C, Hajj GA, Rosen G, Wilson BD, Bailey GJ (2003) Estimation of E × B drift using a global assimilative ionospheric model: an observation system simulation experiment. J Geophys Res Space Phys 108(A2):1–12

    Article  Google Scholar 

  • Roma-Dollase D, Hernández-Pajares M, Krankowski A, Kotulak K, Ghoddousi-Fard R, Yuan Y, Li Z, Zhang H, Shi C, Wang C, Feltens J (2018) Consistency of seven different GNSS global ionospheric mapping techniques during one solar cycle. J Geod 92(6):691–706

    Article  Google Scholar 

  • Sarma A, Ratnam DV, Reddy DK (2009) Modelling of low-latitude ionosphere using modified planar fit method for GAGAN. IET Radar Sonar Navig 3(6):609–619

    Article  Google Scholar 

  • Schaer S (1999) Mapping and predicting the Earth’s ionosphere using the Global Positioning System. Ph.D. dissertation. University of Bern, Bern, Switzerland

  • Scherliess L, Schunk RW, Sojka JJ, Thompson DC, Zhu L (2006) Utah State University global assimilation of ionospheric measurements Gauss-Markov Kalman filter model of the ionosphere: model description and validation. J Geophys Res Space Phys 111(A11):1–12

    Article  Google Scholar 

  • Shukla AK, Das S, Nagori N, Sivaraman M, Bandyopadhyay K (2009) Two-shell ionospheric model for Indian region: a novel approach. IEEE Trans Geosci Remote Sens 47(8):2407–2412

    Article  Google Scholar 

  • Skone S (1998) Wide area ionosphere grid modelling in the auroral region. Ph.D. dissertation, Department of Geomatics Engineering, UCGE Report, University of Calgary, Calgary, Canada

  • Solomentsev D, Jacobsen KS, Khattatov B, Khattatov V, Cherniak Y, Titov A (2014) Ionosphere data assimilation capabilities for representing the high-latitude geomagnetic storm event in September 2011. J Geophys Res Space Phys 119(12):10581–10594

    Article  Google Scholar 

  • Sun YY, Liu JY, Tsai HF, Krankowski A (2017) Global ionosphere map constructed by using total electron content from ground-based GNSS receiver and FORMOSAT-3/COSMIC GPS occultation experiment. GPS Solut 21(4):1583–1591

    Article  Google Scholar 

  • Wang C, Hajj G, Pi X, Rosen IG, Wilson B (2004) Development of the global assimilative ionospheric model. Radio Sci 39(RS1S06):1–11

    Google Scholar 

  • Yeh K, Franke SJ, Andreeva E, Kunitsyn V (2001) An investigation of motions of the equatorial anomaly crest. Geophys Res Lett 28(24):4517–4520

    Article  Google Scholar 

  • Yue X, Schreiner WS, Kuo YH, Hunt DC, Wang W, Solomon SC, Burns AG, Bilitza D, Liu JY, Wan W, Wickert J (2012) Global 3-D ionospheric electron density reanalysis based on multisource data assimilation. J Geophys Res Space Phys 117(A9):1–17

    Article  Google Scholar 

  • Yue X, Schreiner WS, Kuo YH, Braun JJ, Lin YC, Wan W (2014a) Observing system simulation experiment study on imaging the ionosphere by assimilating observations from ground GNSS, LEO-based radio occultation and ocean reflection, and cross link. IEEE Trans Geosci Remote Sens 52(7):3759–3773

    Article  Google Scholar 

  • Yue X, Schreiner WS, Pedatella N, Anthes RA, Mannucci AJ, Straus PR, Liu JY (2014b) Space weather observations by GNSS radio occultation: from FORMOSAT-3/COSMIC to FORMOSAT-7/COSMIC-2. Space Weather 12(11):616–621

    Article  Google Scholar 

Download references

Acknowledgments

The present work has been carried out under the project titled ‘Development of Ionospheric TEC Data Assimilation Model based on Kalman Filter using ground and space-based GNSS and Ionosonde Observations’ sponsored by Science and Engineering Research Board (SERB)/ECR/2015/000410. The authors thank Director/SAC/ISRO for providing GAGAN data under NAVIC– GAGAN Utilization Program at Space Applications Centre, Ahmedabad, India, Project ID: NGP-10. The authors would like to thank reviewers for their valuable suggestions that improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babu Sree Harsha Pasumarthi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pasumarthi, B.S.H., Devanaboyina, V.R. Generation of Assimilated Indian Regional Vertical TEC Maps. GPS Solut 24, 21 (2020). https://doi.org/10.1007/s10291-019-0934-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10291-019-0934-z

Keywords

Navigation