Skip to main content

Advertisement

Log in

Sympathetic and parasympathetic innervation in cancer: therapeutic implications

  • Review
  • Published:
Clinical Autonomic Research Aims and scope Submit manuscript

Abstract

Purpose

The autonomic nervous system, consisting of sympathetic and parasympathetic/vagal nerves, is known to control the functions of any organ, maintaining whole-body homeostasis under physiological conditions. Recently, there has been increasing evidence linking sympathetic and parasympathetic/vagal nerves to cancers. The present review aimed to summarize recent developments from studies addressing the relationship between sympathetic and parasympathetic/vagal nerves and cancer behavior.

Methods

Literature review.

Results

Human and animal studies have revealed that sympathetic and parasympathetic/vagal nerves innervate the cancer microenvironment and alter cancer behavior. The sympathetic nerves have cancer-promoting effects on prostate cancer, breast cancer, and melanoma. On the other hand, while the parasympathetic/vagal nerves have cancer-promoting effects on prostate, gastric, and colorectal cancers, they have cancer-suppressing effects on breast and pancreatic cancers. These neural effects may be mediated by β-adrenergic or muscarinic receptors and can be explained by changes in cancer cell behavior, angiogenesis, tumor-associated macrophages, and adaptive antitumor immunity.

Conclusions

Sympathetic nerves innervating the tumor microenvironment promote cancer progression and are related to stress-induced cancer behavior. The parasympathetic/vagal nerves have variable (promoting or suppressing) effects on different cancer types. Approaches directed toward the sympathetic and parasympathetic/vagal nerves can be developed as a new cancer therapy. In addition to existing pharmacological, surgical, and electrical approaches, a recently developed virus vector-based genetic local neuroengineering technology is a powerful approach that selectively manipulates specific types of nerve fibers innervating the cancer microenvironment and leads to the suppression of cancer progression. This technology will enable the creation of "cancer neural therapy" individually tailored to different cancer types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kamiya A, Hayama Y, Kato S, Shimomura A, Shimomura T, Irie K, Kaneko R, Yanagawa Y, Kobayashi K, Ochiya T (2019) Genetic manipulation of autonomic nerve fiber innervation and activity and its effect on breast cancer progression. Nat Neurosci 22:1289–1305

    Article  CAS  PubMed  Google Scholar 

  2. Karemaker JM (2017) An introduction into autonomic nervous function. Physiol Meas 38:R89–R118

    Article  PubMed  Google Scholar 

  3. Wehrwein EA, Orer HS, Barman SM (2016) Overview of the anatomy, physiology, and pharmacology of the autonomic nervous system. Compr Physiol 6:1239–1278

    Article  PubMed  Google Scholar 

  4. Cole SW, Nagaraja AS, Lutgendorf SK, Green PA, Sood AK (2015) Sympathetic nervous system regulation of the tumour microenvironment. Nat Rev Cancer 15:563–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hanoun M, Maryanovich M, Arnal-Estape A, Frenette PS (2015) Neural regulation of hematopoiesis, inflammation, and cancer. Neuron 86:360–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zahalka AH, Frenette PS (2020) Nerves in cancer. Nat Rev Cancer 20:143–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Faulkner S, Jobling P, March B, Jiang CC, Hondermarck H (2019) Tumor neurobiology and the war of nerves in cancer. Cancer Discov 9:702–710

    Article  CAS  PubMed  Google Scholar 

  8. Hondermarck H, Jobling P (2018) The sympathetic nervous system drives tumor angiogenesis. Trends Cancer 4:93–94

    Article  CAS  PubMed  Google Scholar 

  9. Li J, Tian Y, Wu A (2015) Neuropeptide Y receptors: a promising target for cancer imaging and therapy. Regen Biomater 2:215–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zahalka AH, Arnal-Estape A, Maryanovich M, Nakahara F, Cruz CD, Finley LWS, Frenette PS (2017) Adrenergic nerves activate an angio-metabolic switch in prostate cancer. Science 358:321–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lucas D, Scheiermann C, Chow A, Kunisaki Y, Bruns I, Barrick C, Tessarollo L, Frenette PS (2013) Chemotherapy-induced bone marrow nerve injury impairs hematopoietic regeneration. Nat Med 19:695–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Simo M, Navarro X, Yuste VJ, Bruna J (2018) Autonomic nervous system and cancer. Clin Auton Res 28:301–314

    Article  PubMed  Google Scholar 

  13. Magnon C, Hall SJ, Lin J, Xue X, Gerber L, Freedland SJ, Frenette PS (2013) Autonomic nerve development contributes to prostate cancer progression. Science 341:1236361

    Article  PubMed  Google Scholar 

  14. Bae GE, Kim HS, Won KY, Kim GY, Sung JY, Lim SJ (2019) Lower Sympathetic nervous system density and beta-adrenoreceptor expression are involved in gastric cancer progression. Anticancer Res 39:231–236

    Article  CAS  PubMed  Google Scholar 

  15. Zhao CM, Hayakawa Y, Kodama Y, Muthupalani S, Westphalen CB, Andersen GT, Flatberg A, Johannessen H, Friedman RA, Renz BW, Sandvik AK, Beisvag V, Tomita H, Hara A, Quante M, Li Z, Gershon MD, Kaneko K, Fox JG, Wang TC, Chen D (2014) Denervation suppresses gastric tumorigenesis. Sci Transl Med 6:250ra115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Zhou H, Shi B, Jia Y, Qiu G, Yang W, Li J, Zhao Z, Lv J, Zhang Y, Li Z (2018) Expression and significance of autonomic nerves and alpha9 nicotinic acetylcholine receptor in colorectal cancer. Mol Med Rep 17:8423–8431

    CAS  PubMed  Google Scholar 

  17. Zhang L, Wu LL, Huan HB, Chen XJ, Wen XD, Yang DP, Xia F (2017) Sympathetic and parasympathetic innervation in hepatocellular carcinoma. Neoplasma 64:840–846

    Article  CAS  PubMed  Google Scholar 

  18. Bastos DB, Sarafim-Silva BAM, Sundefeld M, Ribeiro AA, Brandao JDP, Biasoli ER, Miyahara GI, Casarini DE, Bernabe DG (2018) Circulating catecholamines are associated with biobehavioral factors and anxiety symptoms in head and neck cancer patients. PLoS ONE 13:e0202515

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Wang L, Zhi X, Zhang Q, Wei S, Li Z, Zhou J, Jiang J, Zhu Y, Yang L, Xu H, Xu Z (2016) Muscarinic receptor M3 mediates cell proliferation induced by acetylcholine and contributes to apoptosis in gastric cancer. Tumour Biol 37:2105–2117

    Article  CAS  PubMed  Google Scholar 

  20. Ciurea RN, Rogoveanu I, Pirici D, Tartea GC, Streba CT, Florescu C, Catalin B, Puiu I, Tartea EA, Vere CC (2017) B2 adrenergic receptors and morphological changes of the enteric nervous system in colorectal adenocarcinoma. World J Gastroenterol 23:1250–1261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hayakawa Y, Sakitani K, Konishi M, Asfaha S, Niikura R, Tomita H, Renz BW, Tailor Y, Macchini M, Middelhoff M, Jiang Z, Tanaka T, Dubeykovskaya ZA, Kim W, Chen X, Urbanska AM, Nagar K, Westphalen CB, Quante M, Lin CS, Gershon MD, Hara A, Zhao CM, Chen D, Worthley DL, Koike K, Wang TC (2017) Nerve growth factor promotes gastric tumorigenesis through aberrant cholinergic signaling. Cancer Cell 31:21–34

    Article  CAS  PubMed  Google Scholar 

  22. Stopczynski RE, Normolle DP, Hartman DJ, Ying H, DeBerry JJ, Bielefeldt K, Rhim AD, DePinho RA, Albers KM, Davis BM (2014) Neuroplastic changes occur early in the development of pancreatic ductal adenocarcinoma. Cancer Res 74:1718–1727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fernandez EV, Price DK, Figg WD (2013) Prostate cancer progression attributed to autonomic nerve development: potential for therapeutic prevention of localized and metastatic disease. Cancer Biol Ther 14:1005–1006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Campbell JP, Karolak MR, Ma Y, Perrien DS, Masood-Campbell SK, Penner NL, Munoz SA, Zijlstra A, Yang X, Sterling JA, Elefteriou F (2012) Stimulation of host bone marrow stromal cells by sympathetic nerves promotes breast cancer bone metastasis in mice. PLoS Biol 10:e1001363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sloan EK, Priceman SJ, Cox BF, Yu S, Pimentel MA, Tangkanangnukul V, Arevalo JM, Morizono K, Karanikolas BD, Wu L, Sood AK, Cole SW (2010) The sympathetic nervous system induces a metastatic switch in primary breast cancer. Cancer Res 70:7042–7052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bucsek MJ, Qiao G, MacDonald CR, Giridharan T, Evans L, Niedzwecki B, Liu H, Kokolus KM, Eng JW, Messmer MN, Attwood K, Abrams SI, Hylander BL, Repasky EA (2017) beta-Adrenergic signaling in mice housed at standard temperatures suppresses an effector phenotype in CD8+ T cells and undermines checkpoint inhibitor therapy. Cancer Res 77:5639–5651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mulcrone PL, Campbell JP, Clement-Demange L, Anbinder AL, Merkel AR, Brekken RA, Sterling JA, Elefteriou F (2017) Skeletal colonization by breast cancer cells is stimulated by an osteoblast and beta2AR-dependent neo-angiogenic switch. J Bone Miner Res 32:1442–1454

    Article  CAS  PubMed  Google Scholar 

  28. Clement-Demange L, Mulcrone PL, Tabarestani TQ, Sterling JA, Elefteriou F (2018) beta2ARs stimulation in osteoblasts promotes breast cancer cell adhesion to bone marrow endothelial cells in an IL-1beta and selectin-dependent manner. J Bone Oncol 13:1–10

    Article  PubMed  PubMed Central  Google Scholar 

  29. Horvathova L, Tillinger A, Padova A, Mravec B (2016) Sympathectomized tumor-bearing mice survive longer but develop bigger melanomas. Endocr Regul 50:207–214

    Article  CAS  PubMed  Google Scholar 

  30. Thaker PH, Han LY, Kamat AA, Arevalo JM, Takahashi R, Lu C, Jennings NB, Armaiz-Pena G, Bankson JA, Ravoori M, Merritt WM, Lin YG, Mangala LS, Kim TJ, Coleman RL, Landen CN, Li Y, Felix E, Sanguino AM, Newman RA, Lloyd M, Gershenson DM, Kundra V, Lopez-Berestein G, Lutgendorf SK, Cole SW, Sood AK (2006) Chronic stress promotes tumor growth and angiogenesis in a mouse model of ovarian carcinoma. Nat Med 12:939–944

    Article  CAS  PubMed  Google Scholar 

  31. Schuller HM, Al-Wadei HA, Ullah MF, Plummer HK 3rd (2011) Regulation of pancreatic cancer by neuropsychological stress responses: a novel target for intervention. Carcinogenesis 33:191–196

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Powell ND, Tarr AJ, Sheridan JF (2012) Psychosocial stress and inflammation in cancer. Brain Behav Immun 30(Suppl):S41–47

    PubMed  Google Scholar 

  33. Reiche EM, Nunes SO, Morimoto HK (2004) Stress, depression, the immune system, and cancer. Lancet Oncol 5:617–625

    Article  CAS  PubMed  Google Scholar 

  34. Bortolato B, Hyphantis TN, Valpione S, Perini G, Maes M, Morris G, Kubera M, Kohler CA, Fernandes BS, Stubbs B, Pavlidis N, Carvalho AF (2017) Depression in cancer: the many biobehavioral pathways driving tumor progression. Cancer Treat Rev 52:58–70

    Article  PubMed  Google Scholar 

  35. Chida Y, Hamer M, Wardle J, Steptoe A (2008) Do stress-related psychosocial factors contribute to cancer incidence and survival? Nat Clin Pract Oncol 5:466–475

    Article  PubMed  Google Scholar 

  36. Stagl JM, Bouchard LC, Lechner SC, Blomberg BB, Gudenkauf LM, Jutagir DR, Gluck S, Derhagopian RP, Carver CS, Antoni MH (2015) Long-term psychological benefits of cognitive-behavioral stress management for women with breast cancer: 11-year follow-up of a randomized controlled trial. Cancer 121:1873–1881

    Article  PubMed  Google Scholar 

  37. Stagl JM, Lechner SC, Carver CS, Bouchard LC, Gudenkauf LM, Jutagir DR, Diaz A, Yu Q, Blomberg BB, Ironson G, Gluck S, Antoni MH (2015) A randomized controlled trial of cognitive-behavioral stress management in breast cancer: survival and recurrence at 11-year follow-up. Breast Cancer Res Treat 154:319–328

    Article  PubMed  PubMed Central  Google Scholar 

  38. Andersen BL, Thornton LM, Shapiro CL, Farrar WB, Mundy BL, Yang HC, Carson WE 3rd (2010) Biobehavioral, immune, and health benefits following recurrence for psychological intervention participants. Clin Cancer Res 16:3270–3278

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lutgendorf SK, Thaker PH, Arevalo JM, Goodheart MJ, Slavich GM, Sood AK, Cole SW (2018) Biobehavioral modulation of the exosome transcriptome in ovarian carcinoma. Cancer 124:580–586

    Article  CAS  PubMed  Google Scholar 

  40. Grytli HH, Fagerland MW, Fossa SD, Tasken KA (2013) Association between use of beta-blockers and prostate cancer-specific survival: a cohort study of 3561 prostate cancer patients with high-risk or metastatic disease. Eur Urol 65:635–641

    Article  PubMed  CAS  Google Scholar 

  41. Barron TI, Connolly RM, Sharp L, Bennett K, Visvanathan K (2011) Beta blockers and breast cancer mortality: a population- based study. J Clin Oncol 29:2635–2644

    Article  CAS  PubMed  Google Scholar 

  42. Melhem-Bertrandt A, Chavez-Macgregor M, Lei X, Brown EN, Lee RT, Meric-Bernstam F, Sood AK, Conzen SD, Hortobagyi GN, Gonzalez-Angulo AM (2011) Beta-blocker use is associated with improved relapse-free survival in patients with triple-negative breast cancer. J Clin Oncol 29:2645–2652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Montoya A, Amaya CN, Belmont A, Diab N, Trevino R, Villanueva G, Rains S, Sanchez LA, Badri N, Otoukesh S, Khammanivong A, Liss D, Baca ST, Aguilera RJ, Dickerson EB, Torabi A, Dwivedi AK, Abbas A, Chambers K, Bryan BA, Nahleh Z (2017) Use of non-selective beta-blockers is associated with decreased tumor proliferative indices in early stage breast cancer. Oncotarget 8:6446–6460

    Article  PubMed  Google Scholar 

  44. Childers WK, Hollenbeak CS, Cheriyath P (2015) beta-blockers reduce breast cancer recurrence and breast cancer death: a meta-analysis. Clin Breast Cancer 15:426–431

    Article  CAS  PubMed  Google Scholar 

  45. Raimondi S, Botteri E, Munzone E, Cipolla C, Rotmensz N, DeCensi A, Gandini S (2016) Use of beta-blockers, angiotensin-converting enzyme inhibitors and angiotensin receptor blockers and breast cancer survival: systematic review and meta-analysis. Int J Cancer 139:212–219

    Article  CAS  PubMed  Google Scholar 

  46. Zhao Y, Wang Q, Zhao X, Meng H, Yu J (2017) Effect of antihypertensive drugs on breast cancer risk in female hypertensive patients: evidence from observational studies. Clin Exp Hypertens 40:22–27

    Article  PubMed  CAS  Google Scholar 

  47. Shaashua L, Shabat-Simon M, Haldar R, Matzner P, Zmora O, Shabtai M, Sharon E, Allweis T, Barshack I, Hayman L, Arevalo J, Ma J, Horowitz M, Cole S, Ben-Eliyahu S (2017) Perioperative COX-2 and beta-adrenergic blockade improves metastatic biomarkers in breast cancer patients in a Phase-II Randomized Trial. Clin Cancer Res 23:4651–4661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hiller JG, Cole SW, Crone EM, Byrne DJ, Shackleford DM, Pang JB, Henderson MA, Nightingale SS, Ho KM, Myles PS, Fox S, Riedel B, Sloan EK (2019) Preoperative beta-blockade with propranolol reduces biomarkers of metastasis in breast cancer: a Phase II Randomized Trial. Clin Cancer Res 8:1803

    Google Scholar 

  49. De Giorgi V, Grazzini M, Benemei S, Marchionni N, Botteri E, Pennacchioli E, Geppetti P, Gandini S (2017) Propranolol for off-label treatment of patients with melanoma: results from a cohort study. JAMA Oncol 4:e172908

    Article  PubMed Central  Google Scholar 

  50. Knight JM, Rizzo JD, Hari P, Pasquini MC, Giles KE, D'Souza A, Logan BR, Hamadani M, Chhabra S, Dhakal B, Shah N, Sriram D, Horowitz MM, Cole SW (2020) Propranolol inhibits molecular risk markers in HCT recipients: a phase 2 randomized controlled biomarker trial. Blood Adv 4:467–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jang HI, Lim SH, Lee YY, Kim TJ, Choi CH, Lee JW, Kim BG, Bae DS (2017) Perioperative administration of propranolol to women undergoing ovarian cancer surgery: a pilot study. Obstet Gynecol Sci 60:170–177

    Article  PubMed  PubMed Central  Google Scholar 

  52. Yin QQ, Xu LH, Zhang M, Xu C (2018) Muscarinic acetylcholine receptor M1 mediates prostate cancer cell migration and invasion through hedgehog signaling. Asian J Androl 20:608–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cheng K, Shang AC, Drachenberg CB, Zhan M, Raufman JP (2017) Differential expression of M3 muscarinic receptors in progressive colon neoplasia and metastasis. Oncotarget 8:21106–21114

    Article  PubMed  PubMed Central  Google Scholar 

  54. Yu H, Xia H, Tang Q, Xu H, Wei G, Chen Y, Dai X, Gong Q, Bi F (2017) Acetylcholine acts through M3 muscarinic receptor to activate the EGFR signaling and promotes gastric cancer cell proliferation. Sci Rep 7:40802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Raufman JP, Shant J, Xie G, Cheng K, Gao XM, Shiu B, Shah N, Drachenberg CB, Heath J, Wess J, Khurana S (2011) Muscarinic receptor subtype-3 gene ablation and scopolamine butylbromide treatment attenuate small intestinal neoplasia in Apcmin/+ mice. Carcinogenesis 32:1396–1402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Peng Z, Heath J, Drachenberg C, Raufman JP, Xie G (2013) Cholinergic muscarinic receptor activation augments murine intestinal epithelial cell proliferation and tumorigenesis. BMC Cancer 13:204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cheng K, Xie G, Khurana S, Heath J, Drachenberg CB, Timmons J, Shah N, Raufman JP (2014) Divergent effects of muscarinic receptor subtype gene ablation on murine colon tumorigenesis reveals association of M3R and zinc finger protein 277 expression in colon neoplasia. Mol Cancer 13:77

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Erin N, Barkan GA, Clawson GA (2013) Vagus nerve regulates breast cancer metastasis to the adrenal gland. Anticancer Res 33:3675–3682

    PubMed  Google Scholar 

  59. Giese-Davis J, Wilhelm FH, Tamagawa R, Palesh O, Neri E, Taylor CB, Kraemer HC, Spiegel D (2015) Higher vagal activity as related to survival in patients with advanced breast cancer: an analysis of autonomic dysregulation. Psychosom Med 77:346–355

    Article  PubMed  PubMed Central  Google Scholar 

  60. Vigo C, Gatzemeier W, Sala R, Malacarne M, Santoro A, Pagani M, Lucini D (2015) Evidence of altered autonomic cardiac regulation in breast cancer survivors. J Cancer Surviv 9:699–706

    Article  PubMed  Google Scholar 

  61. Renz BW, Tanaka T, Sunagawa M, Takahashi R, Jiang Z, Macchini M, Dantes Z, Valenti G, White RA, Middelhoff MA, Ilmer M, Oberstein PE, Angele MK, Deng H, Hayakawa Y, Westphalen CB, Werner J, Remotti H, Reichert M, Tailor YH, Nagar K, Friedman RA, Iuga AC, Olive KP, Wang TC (2018) Cholinergic signaling via muscarinic receptors directly and indirectly suppresses pancreatic tumorigenesis and cancer stemness. Cancer Discov 8:1458–1473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. De Couck M, Marechal R, Moorthamers S, Van Laethem JL, Gidron Y (2016) Vagal nerve activity predicts overall survival in metastatic pancreatic cancer, mediated by inflammation. Cancer Epidemiol 40:47–51

    Article  PubMed  Google Scholar 

  63. Tolaymat M, Larabee SM, Hu S, Xie G, Raufman JP (2019) The role of M3 muscarinic receptor ligand-induced kinase signaling in colon cancer progression. Cancers (Basel) 11:308

    Article  CAS  Google Scholar 

  64. Austin M, Elliott L, Nicolaou N, Grabowska A, Hulse RP (2017) Breast cancer induced nociceptor aberrant growth and collateral sensory axonal branching. Oncotarget 8:76606–76621

    Article  PubMed  PubMed Central  Google Scholar 

  65. Bloom AP, Jimenez-Andrade JM, Taylor RN, Castaneda-Corral G, Kaczmarska MJ, Freeman KT, Coughlin KA, Ghilardi JR, Kuskowski MA, Mantyh PW (2011) Breast cancer-induced bone remodeling, skeletal pain, and sprouting of sensory nerve fibers. J Pain 12:698–711

    Article  PubMed  PubMed Central  Google Scholar 

  66. Erin N, Zhao W, Bylander J, Chase G, Clawson G (2006) Capsaicin-induced inactivation of sensory neurons promotes a more aggressive gene expression phenotype in breast cancer cells. Breast Cancer Res Treat 99:351–364

    Article  CAS  PubMed  Google Scholar 

  67. Erin N (2020) Role of sensory neurons, neuroimmune pathways, and transient receptor potential vanilloid 1 (TRPV1) channels in a murine model of breast cancer metastasis. Cancer Immunol Immunother 69:307–314

    Article  CAS  PubMed  Google Scholar 

  68. Keskinov AA, Tapias V, Watkins SC, Ma Y, Shurin MR, Shurin GV (2016) Impact of the sensory neurons on melanoma growth in vivo. PLoS ONE 11:e0156095

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Saloman JL, Albers KM, Li D, Hartman DJ, Crawford HC, Muha EA, Rhim AD, Davis BM (2016) Ablation of sensory neurons in a genetic model of pancreatic ductal adenocarcinoma slows initiation and progression of cancer. Proc Natl Acad Sci U S A 113:3078–3083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sinha S, Fu YY, Grimont A, Ketcham M, Lafaro K, Saglimbeni JA, Askan G, Bailey JM, Melchor JP, Zhong Y, Joo MG, Grbovic-Huezo O, Yang IH, Basturk O, Baker L, Park Y, Kurtz RC, Tuveson D, Leach SD, Pasricha PJ (2017) PanIN neuroendocrine cells promote tumorigenesis via neuronal cross-talk. Cancer Res 77:1868–1879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Jurcak NR, Rucki AA, Muth S, Thompson E, Sharma R, Ding D, Zhu Q, Eshleman JR, Anders RA, Jaffee EM, Fujiwara K, Zheng L (2019) Axon guidance molecules promote perineural invasion and metastasis of orthotopic pancreatic tumors in mice. Gastroenterology 157(838–850):e836

    Google Scholar 

  72. Hirth M, Gandla J, Hoper C, Gaida MM, Agarwal N, Simonetti M, Demir A, Xie Y, Weiss C, Michalski CW, Hackert T, Ebert MP, Kuner R (2020) CXCL10 and CCL21 promote migration of pancreatic cancer cells toward sensory neurons and neural remodeling in tumors in mice, associated with pain in patients. Gastroenterology 159:665

    Article  CAS  PubMed  Google Scholar 

  73. Peterson SC, Eberl M, Vagnozzi AN, Belkadi A, Veniaminova NA, Verhaegen ME, Bichakjian CK, Ward NL, Dlugosz AA, Wong SY (2015) Basal cell carcinoma preferentially arises from stem cells within hair follicle and mechanosensory niches. Cell Stem Cell 16:400–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Amit M, Takahashi H, Dragomir MP, Lindemann A, Gleber-Netto FO, Pickering CR, Anfossi S, Osman AA, Cai Y, Wang R, Knutsen E, Shimizu M, Ivan C, Rao X, Wang J, Silverman DA, Tam S, Zhao M, Caulin C, Zinger A, Tasciotti E, Dougherty PM, El-Naggar A, Calin GA, Myers JN (2020) Loss of p53 drives neuron reprogramming in head and neck cancer. Nature 578:449–454

    Article  CAS  PubMed  Google Scholar 

  75. Reijmen E, Vannucci L, De Couck M, De Greve J, Gidron Y (2018) Therapeutic potential of the vagus nerve in cancer. Immunol Lett 202:38–43

    Article  CAS  PubMed  Google Scholar 

  76. Cardwell CR, Pottegard A, Vaes E, Garmo H, Murray LJ, Brown C, Vissers PA, O'Rorke M, Visvanathan K, Cronin-Fenton D, De Schutter H, Lambe M, Powe DG, van Herk-Sukel MP, Gavin A, Friis S, Sharp L, Bennett K (2016) Propranolol and survival from breast cancer: a pooled analysis of European breast cancer cohorts. Breast Cancer Res 18:119

    Article  PubMed  PubMed Central  Google Scholar 

  77. Sorensen GV, Ganz PA, Cole SW, Pedersen LA, Sorensen HT, Cronin-Fenton DP, Garne JP, Christiansen PM, Lash TL, Ahern TP (2013) Use of beta-blockers, angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers, and risk of breast cancer recurrence: a Danish nationwide prospective cohort study. J Clin Oncol 31:2265–2272

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. McCourt C, Coleman HG, Murray LJ, Cantwell MM, Dolan O, Powe DG, Cardwell CR (2014) Beta-blocker usage after malignant melanoma diagnosis and survival: a population-based nested case-control study. Br J Dermatol 170:930–938

    Article  CAS  PubMed  Google Scholar 

  79. Hicks BM, Murray LJ, Powe DG, Hughes CM, Cardwell CR (2013) beta-Blocker usage and colorectal cancer mortality: a nested case-control study in the UK Clinical Practice Research Datalink cohort. Ann Oncol 24:3100–3106

    Article  CAS  PubMed  Google Scholar 

  80. Irie K, Kitagawa K, Nagura H, Imai T, Shimomura T, Fujiyoshi Y (2009) Comparative study of the gating motif and C-type inactivation in prokaryotic voltage-gated sodium channels. J Biol Chem 285:3685–3694

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Grants-in-Aid for Scientific Research promoted by the Ministry of Education, Culture, Sports, Science, and Technology in Japan (17H04365, 18K19950, 18H04707, 20H00666, and 20K21897), the Japan Agency for Medical Research and Development (AMED) under Grant Number JP20cm0106271, the Canon Foundation and the Takeda Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsunori Kamiya.

Ethics declarations

Conflict of interest

The authors declare no competing interests except for a patent (applicant and inventor: Atsunori Kamiya; number: PCT/JP2017/25468; specific aspect of the manuscript covered in the patent application: the genetic engineering of local nerves for the treatment of cancers).

Ethical approval

This review article cites previous human and animal studies that were approved by the appropriate ethics committees in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamiya, A., Hiyama, T., Fujimura, A. et al. Sympathetic and parasympathetic innervation in cancer: therapeutic implications. Clin Auton Res 31, 165–178 (2021). https://doi.org/10.1007/s10286-020-00724-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10286-020-00724-y

Keywords

Navigation