Skip to main content
Log in

Real-Time Optimal Synthetic Inversion Recovery Image Selection (RT-OSIRIS) for Deep Brain Stimulation Targeting

  • Published:
Journal of Imaging Informatics in Medicine Aims and scope Submit manuscript

Abstract

Deep brain stimulation (DBS) is a method of electrical neuromodulation used to treat a variety of neuropsychiatric conditions including essential tremor, Parkinson’s disease, epilepsy, and obsessive–compulsive disorder. The procedure requires precise placement of electrodes such that the electrical contacts lie within or in close proximity to specific target nuclei and tracts located deep within the brain. DBS electrode trajectory planning has become increasingly dependent on direct targeting with the need for precise visualization of targets. MRI is the primary tool for direct visualization, and this has led to the development of numerous sequences to aid in visualization of different targets. Synthetic inversion recovery images, specified by an inversion time parameter, can be generated from T1 relaxation maps, and this represents a promising method for modifying the contrast of deep brain structures to accentuate target areas using a single acquisition. However, there is currently no accessible method for dynamically adjusting the inversion time parameter and observing the effects in real-time in order to choose the optimal value. In this work, we examine three different approaches to implementing an application for real-time optimal synthetic inversion recovery image selection and evaluate them based on their ability to display continually-updated synthetic inversion recovery images as the user modifies the inversion time parameter. These methods include continuously computing the inversion recovery equation at each voxel in the image volume, limiting the computation only to the voxels of the orthogonal slices currently displayed on screen, or using a series of lookup tables with precomputed solutions to the inversion recovery equation. We find the latter implementation provides for the quickest display updates both when modifying the inversion time and when scrolling through the image. We introduce a publicly available cross-platform application built around this conclusion. We also briefly discuss other details of the implementations and considerations for extensions to other use cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig.4
Fig. 5

Similar content being viewed by others

Data Availability

An implementation of the update-LUT method described in this report is available through the NeuroImaging Tools and Resources Collaboratory at the following URL: https://www.nitrc.org/projects/rt-osiris/.

References

  1. Lee DJ, Lozano CS, Dallapiazza RF, Lozano AM. Current and future directions of deep brain stimulation for neurological and psychiatric disorders. J Neurosurg. 2019;131(2):333-342. https://doi.org/10.3171/2019.4.JNS181761

    Article  CAS  PubMed  Google Scholar 

  2. Herrington TM, Cheng JJ, Eskandar EN. Mechanisms of deep brain stimulation. J Neurophysiol. 2016;115(1):19-38. https://doi.org/10.1152/jn.00281.2015

    Article  CAS  PubMed  Google Scholar 

  3. Richardson RM, Ostrem JL, Starr PA. Surgical repositioning of misplaced subthalamic electrodes in Parkinson’s disease: location of effective and ineffective leads. Stereotact Funct Neurosurg. 2009;87(5):297-303. https://doi.org/10.1159/000230692

    Article  PubMed  Google Scholar 

  4. Vayssiere N, Hemm S, Cif L, et al. Comparison of atlas- and magnetic resonance imaging-based stereotactic targeting of the globus pallidus internus in the performance of deep brain stimulation for treatment of dystonia. J Neurosurg. 2002;96(4):673-679. https://doi.org/10.3171/jns.2002.96.4.0673

    Article  PubMed  Google Scholar 

  5. Landi A, Grimaldi M, Antonini A, Parolin M, Zincone A Marina null. MRI indirect stereotactic targeting for deep brain stimulation in Parkinson’s disease. J Neurosurg Sci. 2003;47(1):26–32.

  6. Grewal SS, Middlebrooks EH, Okromelidze L, et al. Variability Between Direct and Indirect Targeting of the Anterior Nucleus of the Thalamus. World Neurosurg. 2020;139:e70-e77. https://doi.org/10.1016/j.wneu.2020.03.107

    Article  PubMed  Google Scholar 

  7. Melo M, Furlanetti L, Hasegawa H, Mundil N, Ashkan K. Comparison of direct MRI guided versus atlas-based targeting for subthalamic nucleus and globus pallidus deep brain stimulation. Br J Neurosurg. 2023;37(5):1040-1045. https://doi.org/10.1080/02688697.2020.1850641

    Article  PubMed  Google Scholar 

  8. Rabie A, Verhagen Metman L, Slavin KV. Using “Functional” Target Coordinates of the Subthalamic Nucleus to Assess the Indirect and Direct Methods of the Preoperative Planning: Do the Anatomical and Functional Targets Coincide? Brain Sci. 2016;6(4):65. https://doi.org/10.3390/brainsci6040065

    Article  PubMed  PubMed Central  Google Scholar 

  9. Middlebrooks EH, Domingo RA, Vivas-Buitrago T, et al. Neuroimaging Advances in Deep Brain Stimulation: Review of Indications, Anatomy, and Brain Connectomics. AJNR Am J Neuroradiol. 2020;41(9):1558-1568. https://doi.org/10.3174/ajnr.A6693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mathiopoulou V, Rijks N, Caan MWA, et al. Utilizing 7-Tesla Subthalamic Nucleus Connectivity in Deep Brain Stimulation for Parkinson Disease. Neuromodulation J Int Neuromodulation Soc. 2023;26(2):333-339. https://doi.org/10.1016/j.neurom.2022.01.003

    Article  Google Scholar 

  11. Patriat R, Cooper SE, Duchin Y, et al. Individualized tractography-based parcellation of the globus pallidus pars interna using 7T MRI in movement disorder patients prior to DBS surgery. NeuroImage. 2018;178:198-209. https://doi.org/10.1016/j.neuroimage.2018.05.048

    Article  PubMed  Google Scholar 

  12. Sudhyadhom A, Haq IU, Foote KD, Okun MS, Bova FJ. A high resolution and high contrast MRI for differentiation of subcortical structures for DBS targeting: the Fast Gray Matter Acquisition T1 Inversion Recovery (FGATIR). NeuroImage. 2009;47 Suppl 2:T44-52. https://doi.org/10.1016/j.neuroimage.2009.04.018

    Article  PubMed  Google Scholar 

  13. Tao S, Zhou X, Westerhold EM, Middlebrooks EH, Lin C. Optimization of fast gray matter acquisition T1 inversion recovery (FGATIR) on 7T MRI for deep brain stimulation targeting. NeuroImage. 2022;252:119043. https://doi.org/10.1016/j.neuroimage.2022.119043

    Article  PubMed  Google Scholar 

  14. Middlebrooks EH, Okromelidze L, Lin C, et al. Edge-enhancing gradient echo with multi-image co-registration and averaging (EDGE-MICRA) for targeting thalamic centromedian and parafascicular nuclei. Neuroradiol J. 2021;34(6):667-675. https://doi.org/10.1177/19714009211021781

    Article  PubMed  PubMed Central  Google Scholar 

  15. Vassal F, Coste J, Derost P, et al. Direct stereotactic targeting of the ventrointermediate nucleus of the thalamus based on anatomic 1.5-T MRI mapping with a white matter attenuated inversion recovery (WAIR) sequence. Brain Stimulat. 2012;5(4):625–633. https://doi.org/10.1016/j.brs.2011.10.007

  16. Tao S, Zhou X, Lin C, Patel V, Westerhold EM, Middlebrooks EH. Optimization of MP2RAGE T1 mapping with radial view-ordering for deep brain stimulation targeting at 7 T MRI. Magn Reson Imaging. 2023;100:55-63. https://doi.org/10.1016/j.mri.2023.03.007

    Article  PubMed  Google Scholar 

  17. Burkett BJ, Fagan AJ, Felmlee JP, et al. Clinical 7-T MRI for neuroradiology: strengths, weaknesses, and ongoing challenges. Neuroradiology. 2021;63(2):167-177. https://doi.org/10.1007/s00234-020-02629-z

    Article  PubMed  Google Scholar 

  18. Gonçalves FG, Serai SD, Zuccoli G. Synthetic Brain MRI: Review of Current Concepts and Future Directions. Top Magn Reson Imaging TMRI. 2018;27(6):387-393. https://doi.org/10.1097/RMR.0000000000000189

    Article  PubMed  Google Scholar 

  19. Marques JP, Kober T, Krueger G, van der Zwaag W, Van de Moortele PF, Gruetter R. MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field. NeuroImage. 2010;49(2):1271-1281. https://doi.org/10.1016/j.neuroimage.2009.10.002

    Article  PubMed  Google Scholar 

  20. Middlebrooks EH, Tao S, Zhou X, et al. Synthetic Inversion Image Generation using MP2RAGE T1 Mapping for Surgical Targeting in Deep Brain Stimulation and Lesioning. Stereotact Funct Neurosurg. 2023;101(5):326-331. https://doi.org/10.1159/000533259

    Article  PubMed  Google Scholar 

  21. Fedorov A, Beichel R, Kalpathy-Cramer J, et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging. 2012;30(9):1323-1341. https://doi.org/10.1016/j.mri.2012.05.001

    Article  PubMed  PubMed Central  Google Scholar 

  22. Michie D. “Memo” Functions and Machine Learning. Nature. 1968;218(5136):19-22. https://doi.org/10.1038/218019a0

    Article  Google Scholar 

  23. Zhang G, Sanchez D. Leveraging Hardware Caches for Memoization. IEEE Comput Archit Lett. 2018;17(1):59-63. https://doi.org/10.1109/LCA.2017.2762308

    Article  Google Scholar 

  24. Chung KL, Wu ST. Inverse halftoning algorithm using edge-based lookup table approach. IEEE Trans Image Process. 2005;14(10):1583-1589. https://doi.org/10.1109/TIP.2005.854494

    Article  PubMed  Google Scholar 

  25. Foley J, Kim W. Image Composition via Lookup Table Manipulation. IEEE Comput Graph Appl. 1987;7(11):26-35. https://doi.org/10.1109/MCG.1987.277067

    Article  Google Scholar 

  26. Wilcox C, Strout MM, Bieman JM. Mesa: automatic generation of lookup table optimizations. In: Proceedings of the 4th International Workshop on Multicore Software Engineering. IWMSE ’11. Association for Computing Machinery; 2011:1–8. https://doi.org/10.1145/1984693.1984694

  27. Snyder J, Seres P, Stobbe RW, et al. Inline dual-echo T2 quantification in brain using a fast mapping reconstruction technique. NMR Biomed. 2023;36(1):e4811. https://doi.org/10.1002/nbm.4811

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Figures 1 and 3 were created with Biorender.com.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishal Patel.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, V., Tao, S., Zhou, X. et al. Real-Time Optimal Synthetic Inversion Recovery Image Selection (RT-OSIRIS) for Deep Brain Stimulation Targeting. J Digit Imaging. Inform. med. (2024). https://doi.org/10.1007/s10278-024-01117-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10278-024-01117-7

Keywords

Navigation