Skip to main content

Advertisement

Log in

NAT10 promotes osteogenic differentiation of periodontal ligament stem cells by regulating VEGFA-mediated PI3K/AKT signaling pathway through ac4C modification

  • Original Article
  • Published:
Odontology Aims and scope Submit manuscript

Abstract

Periodontal tissue regeneration engineering based on human periodontal ligament stem cells (hPDLSCs) provides a broad prospect for the treatment of periodontal disease. N-Acetyltransferase 10 (NAT10)-catalyzed non-histone acetylation is widely involved in physiological or pathophysiological processes. However, its function in hPDLSCs is still missing. hPDLSCs were isolated, purified, and cultured from extracted teeth. Surface markers were detected by flow cytometry. Osteogenic, adipogenic, and chondrogenic differentiation potential was detected by alizarin red staining (ARS), oil red O staining, and Alcian blue staining. Alkaline phosphatase (ALP) activity was assessed by ALP assay. Quantitative real-time PCR (qRT-PCR) and western blot were used to detect the expression of key molecules, such as NAT10, Vascular endothelial growth factor A (VEGFA), PI3K/AKT pathway, as well as bone markers (RUNX2, OCN, OPN). RNA-Binding Protein Immunoprecipitation PCR (RIP-PCR) was used to detect the N4-acetylcytidine (ac4C) mRNA level. Genes related to VEGFA were identified by bioinformatics analysis. NAT10 was highly expressed in the osteogenic differentiation process with enhanced ALP activity and osteogenic capability, and elevated expression of osteogenesis-related markers. The ac4C level and expression of VEGFA were obviously regulated by NAT10 and overexpression of VEGFA also had similar effects to NAT10. The phosphorylation level of PI3K and AKT was also elevated by overexpression of VEGFA. VEGFA could reverse the effects of NAT10 in hPDLSCs. NAT10 enhances the osteogenic development of hPDLSCs via regulation of the VEGFA-mediated PI3K/AKT signaling pathway by ac4C alteration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

Abbreviations

hPDLSCs:

Human periodontal ligament stem cells

NAT10:

N-Acetyltransferase 10

ALP:

Alkaline phosphatase

qRT-PCR:

Quantitative real-time PCR

VEGFA:

Vascular endothelial growth factor A

RIP-PCR:

RNA-Binding Protein Immunoprecipitation PCR

ac4C:

N4-Acetylcytidine

MSCs:

Mesenchymal stem cells

ARS:

Alizarin red staining

SD:

Standard deviation

ANOVA:

One-way analysis of variance

References

  1. Arango D, Sturgill D, Alhusaini N, Dillman AA, Sweet TJ, Hanson G, Hosogane M, Sinclair WR, Nanan KK, Mandler MD, Fox SD, Zengeya TT, Andresson T, Meier JL, Coller J, Oberdoerffer S. Acetylation of cytidine in mRNA promotes translation efficiency. Cell. 2018;175(7):1872–86. https://doi.org/10.1016/j.cell.2018.10.030.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Balmus G, Larrieu D, Barros AC, Collins C, Abrudan M, Demir M, Geisler NJ, Lelliott CJ, White JK, Karp NA, Atkinson J, Kirton A, Jacobsen M, Clift D, Rodriguez R, Adams DJ, Jackson SP. Targeting of NAT10 enhances healthspan in a mouse model of human accelerated aging syndrome. Nat Commun. 2018;9(1):1700. https://doi.org/10.1038/s41467-018-03770-3.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Cai S, Liu X, Zhang C, Xing B, Du X. Autoacetylation of NAT10 is critical for its function in rRNA transcription activation. Biochem Biophys Res Commun. 2017;483(1):624–9. https://doi.org/10.1016/j.bbrc.2016.12.092.

    Article  PubMed  Google Scholar 

  4. Chen Q, Liu X, Wang D, Zheng J, Chen L, Xie Q, Liu X, Niu S, Qu G, Lan J, Li J, Yang C, Zou D. Periodontal inflammation-triggered by periodontal ligament stem cell pyroptosis exacerbates periodontitis. Front Cell Dev Biol. 2021;9:663037. https://doi.org/10.3389/fcell.2021.663037.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Cheng BF, Feng X, Gao YX, Jian SQ, Liu SR, Wang M, Xie YF, Wang L, Feng ZW, Yang HJ. Neural cell adhesion molecule regulates osteoblastic differentiation through Wnt/beta-catenin and PI3K-Akt signaling pathways in MC3T3-E1 Cells. Front Endocrinol. 2021;12:657953. https://doi.org/10.3389/fendo.2021.657953.

    Article  Google Scholar 

  6. Fei X, Cai Y, Lin F, Huang Y, Liu T, Liu Y. Amniotic fluid mesenchymal stem cells repair mouse corneal cold injury by promoting mRNA N4-acetylcytidine modification and ETV4/JUN/CCND2 signal axis activation. Hum Cell. 2021;34(1):86–98. https://doi.org/10.1007/s13577-020-00442-7.

    Article  PubMed  Google Scholar 

  7. Froger N, Matonti F, Roubeix C, Forster V, Ivkovic I, Brunel N, Baudouin C, Sahel JA, Picaud S. VEGF is an autocrine/paracrine neuroprotective factor for injured retinal ganglion neurons. Sci Rep. 2020;10(1):12409. https://doi.org/10.1038/s41598-020-68488-z.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Fruman DA, Chiu H, Hopkins BD, Bagrodia S, Cantley LC, Abraham RT. The PI3K pathway in human disease. Cell. 2017;170(4):605–35. https://doi.org/10.1016/j.cell.2017.07.029.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Fu D, Collins K. Purification of human telomerase complexes identifies factors involved in telomerase biogenesis and telomere length regulation. Mol Cell. 2007;28(5):773–85. https://doi.org/10.1016/j.molcel.2007.09.023.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gibon E, Lu L, Goodman SB. Aging, inflammation, stem cells, and bone healing. Stem Cell Res Ther. 2016;7:44. https://doi.org/10.1186/s13287-016-0300-9.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Han Y, Wang X, Ma D, Wu X, Yang P, Zhang J. Ipriflavone promotes proliferation and osteogenic differentiation of periodontal ligament cells by activating GPR30/PI3K/AKT signaling pathway. Drug Des Devel Ther. 2018;12:137–48. https://doi.org/10.2147/DDDT.S148457.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hernandez-Monjaraz B, Santiago-Osorio E, Monroy-Garcia A, Ledesma-Martinez E, Mendoza-Nunez VM. Mesenchymal stem cells of dental origin for inducing tissue regeneration in periodontitis: a mini-review. Int J Mol Sci. 2018. https://doi.org/10.3390/ijms19040944.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hu K, Olsen BR. Osteoblast-derived VEGF regulates osteoblast differentiation and bone formation during bone repair. J Clin Invest. 2016;126(2):509–26. https://doi.org/10.1172/JCI82585.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ito S, Horikawa S, Suzuki T, Kawauchi H, Tanaka Y, Suzuki T, Suzuki T. Human NAT10 is an ATP-dependent RNA acetyltransferase responsible for N4-acetylcytidine formation in 18 S ribosomal RNA (rRNA). J Biol Chem. 2014;289(52):35724–30. https://doi.org/10.1074/jbc.C114.602698.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kai D, Prabhakaran MP, Jin G, Tian L, Ramakrishna S. Potential of VEGF-encapsulated electrospun nanofibers for in vitro cardiomyogenic differentiation of human mesenchymal stem cells. J Tissue Eng Regen Med. 2017;11(4):1002–10. https://doi.org/10.1002/term.1999.

    Article  PubMed  Google Scholar 

  16. Kim BS, Yang SS, You HK, Shin HI, Lee J. Fucoidan-induced osteogenic differentiation promotes angiogenesis by inducing vascular endothelial growth factor secretion and accelerates bone repair. J Tissue Eng Regen Med. 2018;12(3):e1311–24. https://doi.org/10.1002/term.2509.

    Article  PubMed  Google Scholar 

  17. Li L, Liu F, Huang W, Wang J, Wan Y, Li M, Pang Y, Yin Z. Ricolinostat (ACY-1215) inhibits VEGF expression via PI3K/AKT pathway and promotes apoptosis in osteoarthritic osteoblasts. Biomed Pharmacother. 2019;118:109357. https://doi.org/10.1016/j.biopha.2019.109357.

    Article  PubMed  Google Scholar 

  18. Liu X, Tan Y, Zhang C, Zhang Y, Zhang L, Ren P, Deng H, Luo J, Ke Y, Du X. NAT10 regulates p53 activation through acetylating p53 at K120 and ubiquitinating Mdm2. EMBO Rep. 2016;17(3):349–66. https://doi.org/10.15252/embr.201540505.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Liu YF, Zhu JJ, Yu TX, Liu H, Zhang T, Zhang YP, Xie SA, Zheng M, Kong W, Yao WJ, Pang W, Zhao CR, Tang YJ, Zhou J. Hypermethylation of mitochondrial DNA in vascular smooth muscle cells impairs cell contractility. Cell Death Dis. 2020;11(1):35. https://doi.org/10.1038/s41419-020-2240-7.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lui PP, Wong OT, Lee YW. Transplantation of tendon-derived stem cells pre-treated with connective tissue growth factor and ascorbic acid in vitro promoted better tendon repair in a patellar tendon window injury rat model. Cytotherapy. 2016;18(1):99–112. https://doi.org/10.1016/j.jcyt.2015.10.005.

    Article  PubMed  Google Scholar 

  21. Ma K, Zhang C, Li W. Gamabufotalin suppressed osteosarcoma stem cells through the TGF-beta/periostin/PI3K/AKT pathway. Chem Biol Interact. 2020;331:109275. https://doi.org/10.1016/j.cbi.2020.109275.

    Article  PubMed  Google Scholar 

  22. Ma Y, Ran D, Zhao H, Song R, Zou H, Gu J, Yuan Y, Bian J, Zhu J, Liu Z. Cadmium exposure triggers osteoporosis in duck via P2X7/PI3K/AKT-mediated osteoblast and osteoclast. Sci Total Enviro. 2021;750:141638. https://doi.org/10.1016/j.scitotenv.2020.141638.

    Article  Google Scholar 

  23. Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L. VEGF receptor signaling—in control of vascular function. Nat Rev Mol Cell Biol. 2006;7(5):359–71. https://doi.org/10.1038/nrm1911.

    Article  PubMed  Google Scholar 

  24. Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, Young M, Robey PG, Wang CY, Shi S. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet. 2004;364(9429):149–55. https://doi.org/10.1016/S0140-6736(04)16627-0.

    Article  PubMed  Google Scholar 

  25. Shen Q, Zheng X, McNutt MA, Guang L, Sun Y, Wang J, Gong Y, Hou L, Zhang B. NAT10, a nucleolar protein, localizes to the midbody and regulates cytokinesis and acetylation of microtubules. Exp Cell Res. 2009;315(10):1653–67. https://doi.org/10.1016/j.yexcr.2009.03.007.

    Article  PubMed  Google Scholar 

  26. Shinkaruk S, Bayle M, Lain G, Deleris G. Vascular endothelial cell growth factor (VEGF), an emerging target for cancer chemotherapy. Curr Med Chem Anticancer Agents. 2003;3(2):95–117. https://doi.org/10.2174/1568011033353452.

    Article  PubMed  Google Scholar 

  27. Sui BD, Hu CH, Liu AQ, Zheng CX, Xuan K, Jin Y. Stem cell-based bone regeneration in diseased microenvironments: challenges and solutions. Biomaterials. 2019;196:18–30. https://doi.org/10.1016/j.biomaterials.2017.10.046.

    Article  PubMed  Google Scholar 

  28. Sun K, Luo J, Guo J, Yao X, Jing X, Guo F. The PI3K/AKT/mTOR signaling pathway in osteoarthritis: a narrative review. Osteoarthritis Cartilage. 2020;28(4):400–9. https://doi.org/10.1016/j.joca.2020.02.027.

    Article  PubMed  Google Scholar 

  29. Tan TZ, Miow QH, Huang RY, Wong MK, Ye J, Lau JA, Wu MC, Bin AHL, Soong R, Choolani M, Davidson B, Nesland JM, Wang LZ, Matsumura N, Mandai M, Konishi I, Goh BC, Chang JT, Thiery JP, Mori S. Functional genomics identifies five distinct molecular subtypes with clinical relevance and pathways for growth control in epithelial ovarian cancer [Journal Article]. EMBO Mol Med. 2013;5(7):1051–66. https://doi.org/10.1002/emmm.201201823.

    Article  PubMed  Google Scholar 

  30. Taylor V, Wong M, Brandts C, Reilly L, Dean NM, Cowsert LM, Moodie S, Stokoe D. 5’ phospholipid phosphatase SHIP-2 causes protein kinase B inactivation and cell cycle arrest in glioblastoma cells. Mol Cell Biol. 2000;20(18):6860–71. https://doi.org/10.1128/MCB.20.18.6860-6871.2000.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Tomokiyo A, Wada N, Maeda H. Periodontal ligament stem cells: regenerative potency in periodontium. Stem Cells Develop. 2019;28(15):974–85. https://doi.org/10.1089/scd.2019.0031.

    Article  Google Scholar 

  32. Trubiani O, Pizzicannella J, Caputi S, Marchisio M, Mazzon E, Paganelli R, Paganelli A, Diomede F. Periodontal ligament stem cells: current knowledge and future perspectives. Stem Cells Develop. 2019;28(15):995–1003. https://doi.org/10.1089/scd.2019.0025.

    Article  Google Scholar 

  33. Yang J, Moraga A, Xu J, Zhao Y, Luo P, Lao KH, Margariti A, Zhao Q, Ding W, Wang G, Zhang M, Zheng L, Zhang Z, Hu Y, Wang W, Shen L, Smith A, Shah AM, Wang Q, Zeng L. A histone deacetylase 7-derived peptide promotes vascular regeneration via facilitating 14–3–3gamma phosphorylation. Stem cells. 2020;38(4):556–73. https://doi.org/10.1002/stem.3122.

    Article  PubMed  Google Scholar 

  34. Yang W, Li HY, Wu YF, Mi RJ, Liu WZ, Shen X, Lu YX, Jiang YH, Ma MJ, Shen HY. ac4C acetylation of RUNX2 catalyzed by NAT10 spurs osteogenesis of BMSCs and prevents ovariectomy-induced bone loss. Mol Ther Nucleic Acids. 2021;26:135–47. https://doi.org/10.1016/j.omtn.2021.06.022.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ying Y, Luo J. Salidroside promotes human periodontal ligament cell proliferation and osteocalcin secretion via ERK1/2 and PI3K/Akt signaling pathways. Exp Ther Med. 2018;15(6):5041–5. https://doi.org/10.3892/etm.2018.6006.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zafari F, Shirian S, Sadeghi M, Teimourian S, Bakhtiyari M. CD93 hematopoietic stem cells improve diabetic wound healing by VEGF activation and downregulation of DAPK-1. J Cell Physiol. 2020;235(3):2366–76. https://doi.org/10.1002/jcp.29142.

    Article  PubMed  Google Scholar 

  37. Zhang Y, Xing Y, Jia L, Ji Y, Zhao B, Wen Y, Xu X. An In Vitro comparative study of multisource derived human mesenchymal stem cells for bone tissue engineering. Stem Cells Develop. 2018;27(23):1634–45. https://doi.org/10.1089/scd.2018.0119.

    Article  Google Scholar 

  38. Zheng C, Chen J, Liu S, Jin Y. Stem cell-based bone and dental regeneration: a view of microenvironmental modulation. Int J Oral Sci. 2019;11(3):23. https://doi.org/10.1038/s41368-019-0060-3.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zhu Z, Xing X, Huang S, Tu Y. NAT10 promotes osteogenic differentiation of mesenchymal stem cells by mediating N4-Acetylcytidine modification of Gremlin 1. Stem Cells Int. 2021;2021:8833527. https://doi.org/10.1155/2021/8833527.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to give our sincere gratitude to the reviewers for their constructive comments.

Funding

This work was supported by the role of ETS2-NAT10 in promoting osteogenic differentiation of BMSCs by activating PRP (2022JC085).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongpeng Han.

Ethics declarations

Conflict of interests

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10266_2023_793_MOESM1_ESM.tif

Supplementary file 1: Fig. S1. Mutated NAT10 reduced ac4C level and inhibits osteogenesis. A. RIP was conducted to detect the ac4C level in the control and NAT10-KR group. B. Western blot was conducted to detect Runx2, OCN, and OPN. There were more than three of these duplicates. Mean ± SD was used to express the data. *P <0.05, **P< 0.01, and ***P< 0.001 are all considered significant.

10266_2023_793_MOESM2_ESM.tif

Supplementary file 2: Fig. S2. NAT10 stimulates the phosphorylation of PI3K and AKT. A. Western blot was performed to detect the expression of p-PI3K, PI3K, p-AKT, and AKT. There were more than three of these duplicates. Mean ± SD was used to express the data. *P <0.05, **P< 0.01, and ***P< 0.001 are all considered significant.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Z., Xu, Y., Wu, P. et al. NAT10 promotes osteogenic differentiation of periodontal ligament stem cells by regulating VEGFA-mediated PI3K/AKT signaling pathway through ac4C modification. Odontology 111, 870–882 (2023). https://doi.org/10.1007/s10266-023-00793-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10266-023-00793-1

Keywords

Navigation