Skip to main content

Advertisement

Log in

Effect of resin composite shade on digital fiber-optic transillumination imaging in vitro

  • Original Article
  • Published:
Odontology Aims and scope Submit manuscript

Abstract

Digital imaging fiber-optic transillumination (DIFOTI) devices have been used to detect caries, a technique without using X-rays. However, the effects of resin composites (RCs) shades on the images acquired with DIFOTI devices have not been investigated. Thus, this study aimed to elucidate the influence of RC shade on the images obtained with DIFOTI technique. Three shades (A1, A3, and Opaque) for each of four flowable RCs were filled on a cavity prepared in a left mandibular first premolar obtained from a donated body. Then, transmission images with a DIFOTI device (DIAGNOcam; KaVo, Biberach, Germany) were acquired, and the average lightness values of the images in the RC and enamel were used to calculate differences between those areas. To clarify the influence of the optical translucency and color on DIFOTI images, the color parameters (L*, a* and b*) of each RC were obtained with black and white backgrounds. The color differences between the backgrounds were calculated as transparency parameter (TP) values. The number of repetitions was set to 10. Differences in the lightness value of the shades varied in each RC. The difference in lightness was significantly associated with the TP value and color parameters of L* (p < 0.01), with negative (R = − 0.81) and positive (R = 0.84) correlations, respectively. In conclusion, DIFOTI images of RCs with high optical translucency resembled those of the natural tooth structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Abogazalah N, Eckert GJ, Ando M. In vitro performance of near infrared light transillumination at 780-nm and digital radiography for detection of non-cavitated approximal caries. J Dent. 2017;63:44–50. https://doi.org/10.1016/j.jdent.2017.05.018.

    Article  PubMed  Google Scholar 

  2. Baelum V, Hintze H, Wenzel A, Danielsen B, Nyvad B. Implications of caries diagnostic strategies for clinical management decisions. Commun Dent Oral Epidemiol. 2012;40(3):257–66. https://doi.org/10.1111/j.1600-0528.2011.00655.x.

    Article  Google Scholar 

  3. Abdelaziz M, Krejci I, Perneger T, Feilzer A, Vazquez L. Near infrared transillumination compared with radiography to detect and monitor proximal caries: a clinical retrospective study. J Dent. 2018;70:40–5. https://doi.org/10.1016/j.jdent.2017.12.008.

    Article  PubMed  Google Scholar 

  4. Söchtig F, Hickel R, Kühnisch J. Caries detection and diagnostics with near-infrared light transillumination: clinical experiences. Quintessence Int. 2014;45(6):531–8. https://doi.org/10.3290/j.qi.a31533.

    Article  PubMed  Google Scholar 

  5. Lussi A, Megert B, Longbottom C, Reich E, Francescut P. Clinical performance of a laser fluorescence device for detection of occlusal caries lesions. Eur J Oral Sci. 2001;109(1):14–9. https://doi.org/10.1034/j.1600-0722.2001.109001014.x.

    Article  PubMed  Google Scholar 

  6. Marinova-Takorova M, Anastasova R, Panov VE, Yanakiev S. Comparative evaluation of the effectiveness of three methods for proximal caries diagnosis–a clinical study. J IMAB–Annu Proc Sci Papers. 2014;20(1):514–6. https://doi.org/10.5272/jimab.2014201.514.

    Article  Google Scholar 

  7. Shi XQ, Welander U, Angmar-Månsson B. Occlusal caries detection with KaVo DIAGNOdent and radiography: an in vitro comparison. Caries Res. 2000;34(2):151–8. https://doi.org/10.1159/000016583.

    Article  PubMed  Google Scholar 

  8. Ishida Y, Miyasaka T, Aoki H, Aoyagi Y, Kawai T, Asaumi R, et al. Effect of resin composite filler on digital imaging fiber-optic transillumination. Dent Mater J. 2019;38(5):839–44. https://doi.org/10.4012/dmj.2018-264.

    Article  PubMed  Google Scholar 

  9. Alamoudi NM, Khan JA, El-Ashiry EA, Felemban OM, Bagher SM, Al-Tuwirqi AA. Accuracy of the DIAGNOcam and bitewing radiographs in the diagnosis of cavitated proximal carious lesions in primary molars. Niger J Clin Pract. 2019;22(11):1576–82. https://doi.org/10.4103/njcp.njcp_237_19.

    Article  PubMed  Google Scholar 

  10. Dündar A, Çiftçi ME, İşman Ö, Aktan AM. In vivo performance of near-infrared light transillumination for dentine proximal caries detection in permanent teeth. Saudi Dent J. 2020;32(4):187–93. https://doi.org/10.1016/j.sdentj.2019.08.007.

    Article  PubMed  Google Scholar 

  11. Ekstrand K, Qvist V, Thylstrup A. Light microscope study of the effect of probing in occlusal surfaces. Caries Res. 1987;21(4):368–74. https://doi.org/10.1159/000261041.

    Article  PubMed  Google Scholar 

  12. Poorterman JH, Aartman IH, Kalsbeek H. Underestimation of the prevalence of approximal caries and inadequate restorations in a clinical epidemiological study. Commun Dent Oral Epidemiol. 1999;27(5):331–7. https://doi.org/10.1111/j.1600-0528.1999.tb02029.x.

    Article  Google Scholar 

  13. Elhennawy K, Askar H, Jost-Brinkmann PG, Reda S, Al-Abdi A, Paris S, et al. In vitro performance of the DIAGNOcam for detecting proximal carious lesions adjacent to composite restorations. J Dent. 2018;72:39–43. https://doi.org/10.1016/j.jdent.2018.03.002.

    Article  Google Scholar 

  14. Brouwer F, Askar H, Paris S, Schwendicke F. Detecting secondary caries lesions: a systematic review and meta-analysis. J Dent Res. 2016;95(2):143–51. https://doi.org/10.1177/0022034515611041.

    Article  PubMed  Google Scholar 

  15. Abdelaziz M, Krejci I, Fried D. Enhancing the detection of proximal cavities on near infrared transillumination images with Indocyanine Green (ICG) as a contrast medium: In vitro proof of concept studies. J Dent. 2019;91:103222. https://doi.org/10.1016/j.jdent.2019.103222.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Pallesen U, van Dijken JW. A randomized controlled 27 years follow up of three resin composites in Class II restorations. J Dent. 2015;43(12):1547–58. https://doi.org/10.1016/j.jdent.2015.09.003.

    Article  PubMed  Google Scholar 

  17. Pallesen U, van Dijken JW. A randomized controlled 30 years follow up of three conventional resin composites in Class II restorations. Dent Mater. 2015;31(10):1232–44. https://doi.org/10.1016/j.dental.2015.08.146.

    Article  PubMed  Google Scholar 

  18. Darabi F, Seyed-Monir A, Mihandoust S, Maleki D. The effect of preheating of composite resin on its color stability after immersion in tea and coffee solutions: an in-vitro study. J Clin Exp Dent. 2019;11(12):e1151–6. https://doi.org/10.4317/jced.56438.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ardu S, Braut V, Di Bella E, Lefever D. Influence of background on natural tooth colour coordinates: an in vivo evaluation. Odontology. 2014;102(2):267–71. https://doi.org/10.1007/s10266-013-0126-1.

    Article  PubMed  Google Scholar 

  20. Kim DH, Park SH. Evaluation of resin composite translucency by two different methods. Oper Dent. 2013;38(3):E1-15. https://doi.org/10.2341/12-085-l.

    Article  PubMed  Google Scholar 

  21. Ritter AV, Sulaiman TA, Altitinchi A, Bair E, Baratto-Filho F, Gonzaga CC, et al. Composite-composite adhesion as a function of adhesive-composite material and surface treatment. Oper Dent. 2019;44(4):348–54. https://doi.org/10.2341/18-037-l.

    Article  PubMed  Google Scholar 

  22. Araujo Fde O, Vieira LC, Monteiro JS. Influence of resin composite shade and location of the gingival margin on the microleakage of posterior restorations. Oper Dent. 2006;31(5):556–61. https://doi.org/10.2341/05-94.

    Article  PubMed  Google Scholar 

  23. Maktabi H, Ibrahim M, Alkhubaizi Q, Weir M, Xu H, Strassler H, et al. Underperforming light curing procedures trigger detrimental irradiance-dependent biofilm response on incrementally placed dental composites. J Dent. 2019;88:103110. https://doi.org/10.1016/j.jdent.2019.04.003.

    Article  PubMed  Google Scholar 

  24. Kopperud SE, Tveit AB, Gaarden T, Sandvik L, Espelid I. Longevity of posterior dental restorations and reasons for failure. Eur J Oral Sci. 2012;120(6):539–48. https://doi.org/10.1111/eos.12004.

    Article  PubMed  Google Scholar 

  25. Kasraei S, Shokri A, Poorolajal J, Khajeh S, Rahmani H. Comparison of cone-beam computed tomography and intraoral radiography in detection of recurrent caries under composite restorations. Braz Dent J. 2017;28(1):85–91. https://doi.org/10.1590/0103-6440201701248.

    Article  PubMed  Google Scholar 

  26. Tassery H, Levallois B, Terrer E, Manton DJ, Otsuki M, Koubi S, et al. Use of new minimum intervention dentistry technologies in caries management. Aust Dent J. 2013;58(Suppl 1):40–59. https://doi.org/10.1111/adj.12049.

    Article  PubMed  Google Scholar 

  27. Kripnerova T, Krulisova V, Ptakova N, Macek M Jr, Dostalova T. Complex morphological and molecular genetic examination of amelogenesis imperfecta: a case presentation of two Czech siblings with a non-syndrome form of the disease. Neuro Endocrinol Lett. 2014;35(5):347–51.

    PubMed  Google Scholar 

  28. Schaefer G, Pitchika V, Litzenburger F, Hickel R, Kühnisch J. Evaluation of occlusal caries detection and assessment by visual inspection, digital bitewing radiography and near-infrared light transillumination. Clin Oral Investig. 2018;22(7):2431–8. https://doi.org/10.1007/s00784-018-2512-0.

    Article  PubMed  Google Scholar 

  29. Tassoker M, Ozcan S, Karabekiroglu S. Occlusal caries detection and diagnosis using visual ICDAS criteria, laser fluorescence measurements, and near-infrared light transillumination images. Med Princ Pract. 2020;29(1):25–31. https://doi.org/10.1159/000501257.

    Article  PubMed  Google Scholar 

  30. Inokoshi S, Burrow MF, Kataumi M, Yamada T, Takatsu T. Opacity and color changes of tooth-colored restorative materials. Oper Dent. 1996;21(2):73–80.

    PubMed  Google Scholar 

  31. Sidhu SK, Ikeda T, Omata Y, Fujita M, Sano H. Change of color and translucency by light curing in resin composites. Oper Dent. 2006;31(5):598–603. https://doi.org/10.2341/05-109.

    Article  PubMed  Google Scholar 

  32. Uchida H, Vaidyanathan J, Viswanadhan T, Vaidyanathan TK. Color stability of dental composites as a function of shade. J Prosthet Dent. 1998;79(4):372–7. https://doi.org/10.1016/s0022-3913(98)70147-7.

    Article  PubMed  Google Scholar 

  33. Karaagaclioglu L, Yilmaz B. Influence of cement shade and water storage on the final color of leucite-reinforced ceramics. Oper Dent. 2008;33(4):386–91. https://doi.org/10.2341/07-61.

    Article  PubMed  Google Scholar 

  34. Ferracane JL, Aday P, Matsumoto H, Marker VA. Relationship between shade and depth of cure for light-activated dental composite resins. Dent Mater. 1986;2(2):80–4. https://doi.org/10.1016/s0109-5641(86)80057-4.

    Article  PubMed  Google Scholar 

  35. Kim D, Park SH. Color and translucency of resin-based composites: comparison of a-shade specimens within various product lines. Oper Dent. 2018;43(6):642–55. https://doi.org/10.2341/17-228-l.

    Article  PubMed  Google Scholar 

  36. Ota M, Ando S, Endo H, Ogura Y, Miyazaki M, Hosoya Y. Influence of refractive index on optical parameters of experimental resin composites. Acta Odontol Scand. 2012;70(5):362–7. https://doi.org/10.3109/00016357.2011.600724.

    Article  PubMed  Google Scholar 

  37. Johnston WM, Reisbick MH. Color and translucency changes during and after curing of esthetic restorative materials. Dent Mater. 1997;13(2):89–97. https://doi.org/10.1016/s0109-5641(97)80017-6.

    Article  PubMed  Google Scholar 

  38. Macey R, Walsh T, Riley P, Hogan R, Glenny AM, Worthington HV, et al. Transillumination and optical coherence tomography for the detection and diagnosis of enamel caries. Cochrane Database Syst Rev. 2021;1:Cd013855. https://doi.org/10.1002/14651858.Cd013855.

    Article  PubMed  Google Scholar 

  39. Steinmeier S, Wiedemeier D, Hämmerle CHF, Mühlemann S. Accuracy of remote diagnoses using intraoral scans captured in approximate true color: a pilot and validation study in teledentistry. BMC Oral Health. 2020;20(1):266. https://doi.org/10.1186/s12903-020-01255-8.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: YI; Investigation: DM, AS; Methodology: Akikazu Shinya; Formal analysis: DM; Original draft preparation: YI, DM; Review and editing: AS: Project administration: Akikazu Shinya. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Akikazu Shinya.

Ethics declarations

Conflict of interest

The authors confirm that there are no known conflicts of interest associated with this publication.

Ethical approval

This study was approved by the Institutional Review Board of the Nippon Dental University (NDU-T2021-26).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishida, Y., Miura, D. & Shinya, A. Effect of resin composite shade on digital fiber-optic transillumination imaging in vitro. Odontology 111, 854–862 (2023). https://doi.org/10.1007/s10266-023-00792-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10266-023-00792-2

Keywords

Navigation