Skip to main content

Advertisement

Log in

β-defensin 2 synthesized by a cell-free protein synthesis system and encapsulated in liposomes inhibits adhesion of Porphyromonas gingivalis to oral epithelial cells

  • Original Article
  • Published:
Odontology Aims and scope Submit manuscript

Abstract

β-defensin 2 (BD-2), an antimicrobial peptide (AMP), is expressed by oral epithelial cells and plays an important role in innate immunity of the oral cavity. Cell-free protein synthesis (CFPS) systems have been studied for the synthesis of various proteins, however, the synthesis of BD-2 by a CFPS system has not been extensively explored. Liposomes have been developed as tools for drug delivery. A delivery of liposome-encapsulated AMP to oral epithelium may be useful to prevent oral infectious diseases. In the present study, we investigated the antimicrobial activity of the BD-2 protein, artificially synthesized using a CFPS system and encapsulated in liposomes. BD-2 protein was artificially synthesized using template DNA and a reconstituted CFPS system and was identified by western blotting. Bilayer liposomes were prepared using 1,2-dioleoyl-sn-glycero-3-phospho-choline and 3-sn-phosphatidylcholine from egg yolk. The artificially synthesized BD-2 was encapsulated in liposomes, collected by ultrafiltration, and detected by western blotting. Human oral epithelial cells were cultured with the liposome-encapsulated BD-2 and the concentration of BD-2 in the cell lysate of the culture with the synthesized BD-2 was higher than that of the control cultures. The antimicrobial activity of the synthesized BD-2 was investigated by an adhesion assay of Porphyromonas gingivalis to oral epithelial cells. The artificially synthesized BD-2 and its liposome significantly inhibited adhesion of P. gingivalis to oral epithelial cells. These results suggest that artificially synthesized BD-2 and liposome-encapsulated BD-2 show antimicrobial activity and can potentially play a role in oral healthcare for periodontal diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data supporting the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Tavares M, Calabi KAL, Martin LS. Systemic diseases and oral health. Dent Clin North Am. 2014;58(4):797–814.

    Article  PubMed  Google Scholar 

  2. Meyerhoefer CD, Pepper JV, Manski RJ, Moeller JF. Dental care use, edentulism, and systemic health among older adults. J Dent Res. 2021;100(13):1468–74.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Yadav SK, Khan G, Mishra B. Advances in patients related to intrapocket technology for the management of periodontitis. Recent Pat Drug Deliv Formul. 2015;9(2):129–45.

    Article  PubMed  Google Scholar 

  4. Hiroshima Y, Bando M, Kataoka M, Inagaki Y, Herzberg MC, Ross KF, et al. Regulation of antimicrobial peptide expression in human gingival keratinocytes by interleukin-1α. Arch Oral Biol. 2011;56(8):761–7.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gorr S-U, Abdolhosseini M. Antimicrobial peptides and periodontal disease. J Clin Periodontol. 2011;38(Suppl. 11):126–41.

    Article  PubMed  Google Scholar 

  6. Jiang Y, Chen Y, Song Z, Tan Z, Cheng J. Recent advances in design of antimicrobial peptides and polypeptides toward clinical translation. Adv Drug Deliv Rev. 2021;170:261–80.

    Article  PubMed  Google Scholar 

  7. Schröder JM, Harder J. Human beta-defensin-2. Int J Biochem Cell Biol. 1999;31(6):645–51.

    Article  PubMed  Google Scholar 

  8. Chen H, Xu Z, Peng L, Fang X, Yin X, Xu N, et al. Recent advances in the research and development of human defensins. Peptides. 2006;27(4):931–40.

    Article  PubMed  Google Scholar 

  9. Harder J, Bartels J, Christophers E, Schröder JM. A peptide antibiotic from human skin. Nature. 1997;387(6636):861.

    Article  PubMed  Google Scholar 

  10. Schneider JJ, Unholzer A, Schaller M, Schäfer-Korting M, Korting HC. Human defensins. J Mol Med (Berl). 2005;83(8):587–95.

    Article  PubMed  Google Scholar 

  11. Mineshiba F, Takashiba S, Mineshiba J, Matsuura K, Kokeguchi S, Murayama Y. Antibacterial activity of synthetic human B defensin-2 against periodontal bacteria. J Int Acad Periodontol. 2003;5(2):35–40.

    PubMed  Google Scholar 

  12. Joly S, Maze C, McCray PB Jr, Guthmiller JM. Human beta-defensins 2 and 3 demonstrate strain-selective activity against oral microorganisms. J Clin Microbiol. 2004;42(3):1024–9.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Shimizu Y, Kanamori T, Ueda T. Protein synthesis by pure translation systems. Methods. 2005;36(3):299–304.

    Article  PubMed  Google Scholar 

  14. Perez JG, Stark JC, Jewett MC. Cell-free synthetic biology: engineering beyond the cell. Cold Spring Harb Perspect Biol. 2016;8: a023853.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Dondapati SK, Stech M, Zemella A, Kubick S. Cell-free protein synthesis: a promising option for future drug development. BioDrugs. 2020;34(3):327–48.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chiba CH, Knirsch MC, Azzoni AR, Moreira AR, Stephano MA. Cell-free protein synthesis: advances on production process for biopharmaceuticals and immunobiological products. Biotechniques. 2021;70(2):126–33.

    Article  PubMed  Google Scholar 

  17. Matsubayashi H, Ueda T. Purified cell-free systems as standard parts for synthetic biology. Curr Opin Chem Biol. 2014;22:158–62.

    Article  PubMed  Google Scholar 

  18. Chen H, Xu Z, Xu N, Cen P. Efficient production of a soluble fusion protein containing human beta-defensin-2 in E.coli cell-free system. J Biotechol. 2005;115(3):307–15.

    Article  Google Scholar 

  19. Niu Z, Conejos-Sánchez I, Griffin BT, O’Driscoll CM, Alonso MJ. Lipid-based nanocarriers for oral peptide delivery. Adv Drug Deliv Rev. 2016;106(Pt8):337–54.

    Article  PubMed  Google Scholar 

  20. van Nies P, Nourian Z, Kok M, van Wijk R, Moeskops J, Westerlaken I, et al. Unbiased tracking of the progression of mRNA and protein synthesis in bulk and in liposome-confined reactions. ChemBioChem. 2013;14(15):1963–6.

    Article  PubMed  Google Scholar 

  21. Kusumoto K, Akita H, Ishitsuka T, Matsumoto Y, Nomoto T, Furukawa R, et al. Lipid envelope-type nanoparticle incorporating a multifunctional peptide for systemic siRNA delivery to the pulmonary endothelium. ACS Nano. 2013;7(9):7534–41.

    Article  PubMed  Google Scholar 

  22. Kajimoto K, Sato Y, Nakamura T, Yamada Y, Harashima H. Multifunctional envelope-type nano device for controlled intracellular trafficking and selective targeting in vivo. J Control Release. 2014;190:593–606.

    Article  PubMed  Google Scholar 

  23. Oku N. Innovations in liposomal DDS technology and its application for the treatment of various diseases. Biol Pharm Bull. 2017;40(2):119–27.

    Article  PubMed  Google Scholar 

  24. Walde P, Cosentino K, Engel H, Stano P. Giant vesicles: preparations and applications. ChemBioChem. 2010;11(7):848–65.

    Article  PubMed  Google Scholar 

  25. Yamada A, Yamanaka T, Hamada T, Hase M, Yoshikawa K, Daigel D. Spontaneous transfer of phospholipid-coated oil-in-oil and water-in-oil micro-droplets through an oil/water interface. Langmuir. 2006;22(24):9824–8.

    Article  PubMed  Google Scholar 

  26. Liu YJ, Hansen GP, Venancio-Marques A, Baigl D. Cell-free preparation of functional and triggerable giant proteoliposomes. ChemBioChem. 2013;14(17):2243–7.

    Article  PubMed  Google Scholar 

  27. Chowdhuri S, Cole CM, Devaraj NK. Encapsulation of living cells within giant phospholipid liposomes formed by the inverse-emulation technique. ChemBioChem. 2016;17(10):886–9.

    Article  PubMed  Google Scholar 

  28. Hamada T, Miura Y, Komatsu Y, Kishimoto Y, Vestergaard M, Takagi M. Construction of asymmetric cell-sized lipid vesicles from lipid-coated water-in-oil microdroplets. J Phys Chem B. 2008;112(47):14678–81.

    Article  PubMed  Google Scholar 

  29. Zanaboni E, Arato V, Pizza M, Seubert A, Leuzzi R. A novel high-throughput assay to quantify the vaccine-induced inhibition of Bordetella pertussis adhesion to airway epithelia. BMC Micorbiol. 2016;16:215.

    Article  Google Scholar 

  30. Taguchi Y, Imai H. Expression of beta-defensin-2 in human gingival epithelial cells in response to challenge with Porphyromonas gingivalis in vitro. J Periodontal Res. 2006;41(4):334–9.

    Article  PubMed  Google Scholar 

  31. Yong X, Chen Y, Tao R, Zeng Q, Liu Z, Jiang L, et al. Periodontopathogens and human β-defensin-2 expression in gingival crevicular fluid from patients with periodontal disease in Guangxi. China J Periodontal Res. 2015;50(3):403–10.

    Article  PubMed  Google Scholar 

  32. Öztürk A, Kurt-Bayrakdar S, Avci B. Comparison of gingival crvicular fluid and serum human beta-defensin-2 levels between periodontal health and disease. Oral Dis. 2021;27(4):993–1000.

    Article  PubMed  Google Scholar 

  33. Xu Z, Chen H, Yin X, Xu N, Cen P. High-level expression of soluble human beta-defensin-2 fused with green fluorescent protein in Escherichia coli cell-free system. Appl Biochem Biotechnol. 2005;127(1):53–62.

    Article  PubMed  Google Scholar 

  34. Chen H, Xu Z, Cen P. High-level expression of human beta-defensin-2 gene with rare codons in E.coli cell-free system. Protein Pept Lett. 2006;13(2):155–62.

    Article  PubMed  Google Scholar 

  35. Nakagawa T, Yamada S, Oosuka Y, Saito A, Hosaka Y, Ishikawa T, et al. Clinical and microbiological study of local minocycline delivery (Periocline) following scaling and root planing in recurrent periodontal pockets. Bull Tokyo Dent Coll. 1991;32(2):63–70.

    PubMed  Google Scholar 

  36. Mou J, Liu Z, Liu J, Lu J, Zhu W, Pei D. Hydrogel containing minocycline and zinc oxide-loaded serum albumin nanopartical for periodontitis application: preparation, characterization and evaluation. Drug Deliv. 2019;26(1):179–87.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zięba M, Chaber P, Duale K, Maksymaiak MM, Basczok M, Kowalczuk M, et al. Polymeric carriers for delivery systems in the treatment of chronic periodontal disease. Polymers (Basel). 2020;12(7):1574.

    Article  PubMed  Google Scholar 

  38. Chaturvedi TP, Stivastava R, Strivastava AK, Gupta V, Kumar VP. Doxycycline poly e-caprolactone nanofibers in patients with chronic periodontitis-a clinical evaluation. J Clin Diagn Res. 2013;7(10):2339–42.

    PubMed  PubMed Central  Google Scholar 

  39. Greenstein G, Polson A. The role of local drug delivery in the management of periodontal diseases: a comprehensive review. J Periodontol. 1998;69(5):507–20.

    Article  PubMed  Google Scholar 

  40. Petelin M, Pavlica Z, Ivanuša T, Šentjurc M, Skalerič U. Local delivery of liposome-encapsulated superoxide dismutase and catalase suppress periodontal inflammation in beagles. J Clin Periodontol. 2000;27(12):918–25.

    Article  PubMed  Google Scholar 

  41. Ishikado A, Uesaki S, Suido H, Nomura Y, Sumikawa K, Maeda M, et al. Human trial of liposomal lactoferrin supplementation for periodontal diseases. Biol Pharm Bull. 2010;33(10):1758–62.

    Article  PubMed  Google Scholar 

  42. Shi J, Zhang Y, Zhang X, Chen R, Wei J, Hou J, et al. Remodeling immune microenvironment in periodontitis using resveratorol liposomes as an antibiotics-free therapeutic strategy. J Nanobiotechnol. 2021;19(1):429.

    Article  Google Scholar 

  43. Collins MD, Gordon SE. Giant liposome preparation for imaging and patch-clamp electrophysiology. J Vis Exp. 2013;76:50227.

    Google Scholar 

  44. Luisi PL. Toward the engineering of minimal living cells. Anat Rec. 2002;268(3):208–14.

    Article  PubMed  Google Scholar 

  45. Tsai F-C, Stuhrmann B, Koenderink GH. Encapsulation of active cytoskeletal protein networks in cell-sized liposomes. Langmuir. 2011;27(16):10061–71.

    Article  PubMed  Google Scholar 

  46. Kamiya K. Development of artificial cell models using microfluidic technology and synthetic biology. Micromachines (Basel). 2020;11(6):559.

    Article  PubMed  Google Scholar 

  47. Hosoda K, Sunami T, Kazuta Y, Matsuura T, Suzuki H, Yomo T. Quantitative study of the structure of multilamellar giant liposomes as a container of protein synthesis reaction. Langmuir. 2008;24(23):13540–8.

    Article  PubMed  Google Scholar 

  48. Antimisiaris SG, Jayasekera P, Gregoriadis G. Liposomes as vaccine carriers. Incorporation of soluble and particulate antigens in giant vesicles. J Immunol Methods. 1993;166(2):271–80.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (17H04418, 20K09941, 20K23083 and 22K17040). We thank GeneFrontier Co., Ltd. (Chiba, Japan) for supporting the design of the template DNA sequences with AT-rich codons for BD-2 synthesis.

Author information

Authors and Affiliations

Authors

Contributions

YH: Planning study, performing experiments (template DNA preparation, synthesized BD-2 analysis, bacterial adhesion assay etc.), writing and reviewing a manuscript and summarizing the study. JK: Co-planning study, performing experiments (liposome preparation, western blotting and ELISA), and supporting the preparation of figures in the manuscript. RK: Performing experiments (cell culture, ELISA and western blotting). KY: Observing liposomes. MB: Supporting SDS-PAGE and western blotting procedures, KK: Instructing liposome preparation and delivery experiments. HY: Advising study performance. YS: Instructing cell-free protein synthesis and evaluating the result data.

Corresponding author

Correspondence to Yuka Hiroshima.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest related to this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 334 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hiroshima, Y., Kido, Ji., Kido, R. et al. β-defensin 2 synthesized by a cell-free protein synthesis system and encapsulated in liposomes inhibits adhesion of Porphyromonas gingivalis to oral epithelial cells. Odontology 111, 830–838 (2023). https://doi.org/10.1007/s10266-023-00789-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10266-023-00789-x

Keywords

Navigation