Skip to main content

Advertisement

Log in

Effects of phytosomal curcumin treatment on modulation of immunomodulatory and pulp regeneration genes in dental pulp mesenchymal stem cells

  • Original Article
  • Published:
Odontology Aims and scope Submit manuscript

Abstract

Dental pulp stem cells (DPSCs) are a new population of mesenchymal stem cells (MSCs) located in the oral cavity with potential capacities for tissue regeneration and immunomodulation. The purpose from this study was to determine effects of curcumin nanoparticle into phytosomal formulation (PC) on the relative expression of DSPP, VEGF-A, HLA-G5, VCAM1, RelA and STAT3 genes which are among the most important factors influencing processes of immunomodulatory and tissue regenerative by DPSCs. After isolation and culture of DPSCs, these cells were characterized according to predetermined criteria including flow cytometric analysis for detection of the most important cell surface markers and also evaluation of multilineage differentiation potential. Then, the MTT method was employed to check the cell viability in treatment with different concentrations of PC. Following DPSCs’ treatment with an optimal-non-toxic dose of this nanoparticle, quantification of expression of target genes was performed using real-time PCR procedure. According to results of immunophenotyping analysis and cell differentiation experiments, the isolated cells were confirmed as MSCs as more than 99% of them expressed specific mesenchymal markers while only about 0.5% of them were positive for hematopoietic marker. The real-time PCR results indicated that PC significantly reduced the expression of RelA, STAT3, VCAM1 and HLA-G5 genes up to many times over while optimally enhanced the expression of DSPP and VEGF-A genes, although this enhance was statistically significant only for VEGF-A (all P < 0.001). The study suggests that PC affects the stemness capabilities of DPSCs and it may facilitate the development of MSCs-based therapeutics in regenerative dentistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data are available from the corresponding author upon reasonable request.

Abbreviations

DPSC:

Dental pulp stem cell

DP-MSCs:

Dental pulp mesenchymal stem cells

PC:

Phytosomal curcumin

DSPP:

Dentin sialophosphoprotein

VEGF:

Vascular endothelial growth factor

HLA-G5:

Human leukocyte antigen-G5

STAT:

Signal transducer and activator of transcription

VCAM:

Vascular cell adhesion molecule

References

  1. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci. 2000;97(25):13625–30.

    PubMed  PubMed Central  Google Scholar 

  2. Lin C-S, Xin Z-C, Dai J, Lue TF. Commonly used mesenchymal stem cell markers and tracking labels: limitations and challenges. Histol Histopathol. 2013;28(9):1109.

    PubMed  PubMed Central  Google Scholar 

  3. Dominici ML, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini FC, Krause DS, Deans RJ, Keating A, Prockop DJ, Horwitz EM. Minimal criteria for defining multipotent mesenchymal stromal cells. Int Soc Cell Therapy Position Statement. 2006;8(4):315–7.

    Google Scholar 

  4. Siew Ching H, Luddin N, Ab Rahman I, Thirumulu PK. Expression of odontogenic and osteogenic markers in DPSCs and SHED: a review. Curr Stem Cell Res Ther. 2017;12(1):71–9.

    Google Scholar 

  5. Sui B, Wu D, Xiang L, Fu Y, Kou X, Shi S. Dental pulp stem cells: from discovery to clinical application. J Endod. 2020;46(9):S46-55.

    PubMed  Google Scholar 

  6. Ishizaka R, Iohara K, Murakami M, Fukuta O, Nakashima MJB. Regeneration of dental pulp following pulpectomy by fractionated stem/progenitor cells from bone marrow and adipose tissue. Biomaterials. 2012;33(7):2109–18.

    PubMed  Google Scholar 

  7. Iohara K, Utsunomiya S, Kohara S, Nakashima M. Allogeneic transplantation of mobilized dental pulp stem cells with the mismatched dog leukocyte antigen type is safe and efficacious for total pulp regeneration. Stem Cell Res Therapy. 2018;9(1):1–6.

    Google Scholar 

  8. Pierdomenico L, Bonsi L, Calvitti M, Rondelli D, Arpinati M, Chirumbolo G, Becchetti E, Marchionni C, Alviano F, Fossati V, Staffolani N. Multipotent mesenchymal stem cells with immunosuppressive activity can be easily isolated from dental pulp. Transplantation. 2005;80(6):836–42.

    PubMed  Google Scholar 

  9. Hossein-Khannazer N, Hashemi SM, Namaki S, Ghanbarian H, Sattari M, Khojasteh A. Study of the immunomodulatory effects of osteogenic differentiated human dental pulp stem cells. Life Sci. 2019;216:111–8.

    PubMed  Google Scholar 

  10. Andrukhov CB, Blufstein A, Rausch-Fan X. Immunomodulatory properties of dental tissue-derived mesenchymal stem cells: implication in disease and tissue regeneration. World J Stem Cells. 2019;11(9):604.

    PubMed  PubMed Central  Google Scholar 

  11. Li Y, Zhang D, Xu L, Dong L, Zheng J, Lin Y, Huang J, Zhang Y, Tao Y, Zang X, Li D. Cell–cell contact with proinflammatory macrophages enhances the immunotherapeutic effect of mesenchymal stem cells in two abortion models. Cell Mol Immunol. 2019;16(12):908–20.

    PubMed  PubMed Central  Google Scholar 

  12. Nakashima M, Iohara K, Sugiyama M. Human dental pulp stem cells with highly angiogenic and neurogenic potential for possible use in pulp regeneration. Cytokine Growth Factor Rev. 2009;20(5–6):435–40.

    PubMed  Google Scholar 

  13. Zhu Q, Gibson MP, Liu Q, Liu Y, Lu Y, Wang X, Feng JQ, Qin C. Proteolytic processing of dentin sialophosphoprotein (DSPP) is essential to dentinogenesis. J Biol Chem. 2012;287(36):30426–35.

    PubMed  PubMed Central  Google Scholar 

  14. Jin Q, Yuan K, Lin W, Niu C, Ma R, Huang Z. Comparative characterization of mesenchymal stem cells from human dental pulp and adipose tissue for bone regeneration potential. Artif Cells Nanomed Biotechnol. 2019;47(1):1577–84.

    PubMed  Google Scholar 

  15. Dissanayaka WL, Hargreaves KM, Jin L, Samaranayake LP, Zhang C. The interplay of dental pulp stem cells and endothelial cells in an injectable peptide hydrogel on angiogenesis and pulp regeneration in vivo. Tissue Eng Part A. 2015;21(3–4):550–63.

    PubMed  Google Scholar 

  16. Yu J, He H, Tang C, Zhang G, Li Y, Wang R, Shi J, Jin Y. Differentiation potential of STRO-1+ dental pulp stem cells changes during cell passaging. BMC Cell Biol. 2010;11(1):1–7.

    Google Scholar 

  17. Yang X, Zhang W, van den Dolder J, Walboomers XF, Bian Z, Fan M, Jansen JA. Multilineage potential of STRO-1+ rat dental pulp cells in vitro. J Tissue Eng Regen Med. 2007;1(2):128–35.

    PubMed  Google Scholar 

  18. Yang X, Walboomers XF, van den Beucken JJ, Bian Z, Fan M, Jansen JA. Hard tissue formation of STRO-1–selected rat dental pulp stem cells in vivo. Tissue Eng Part A. 2009;15(2):367–75.

    PubMed  Google Scholar 

  19. Yang X, Van der Kraan PM, Dolder JV, Walboomers XF, Bian Z, Fan M, Jansen JA. STRO-1 selected rat dental pulp stem cells transfected with adenoviral-mediated human bone morphogenetic protein 2 gene show enhanced odontogenic differentiation. Tissue Eng. 2007;13(11):2803–12.

    PubMed  Google Scholar 

  20. Fukiage K, Aoyama T, Shibata KR, Otsuka S, Furu M, Kohno Y, Ito K, Jin Y, Fujita S, Fujibayashi S, Neo M. Expression of vascular cell adhesion molecule-1 indicates the differentiation potential of human bone marrow stromal cells. Biochem Biophys Res Commun. 2008;365(3):406–12.

    PubMed  Google Scholar 

  21. Mabuchi Y, Morikawa S, Harada S, Niibe K, Suzuki S, Renault-Mihara F, Houlihan DD, Akazawa C, Okano H, Matsuzaki Y. LNGFR+ THY-1+ VCAM-1hi+ cells reveal functionally distinct subpopulations in mesenchymal stem cells. Stem Cell Rep. 2013;1(2):152–65.

    Google Scholar 

  22. Hollands P, Aboyeji D, Orcharton M. Dental pulp stem cells in regenerative medicine. Br Dent J. 2018;224(9):747.

    Google Scholar 

  23. Yu S, Li P, Li B, Miao D, Deng Q. RelA promotes proliferation but inhibits osteogenic and chondrogenic differentiation of mesenchymal stem cells. FEBS Lett. 2020;594(9):1368–78.

    PubMed  Google Scholar 

  24. Demircan PC, Sariboyaci AE, Unal ZS, Gacar G, Subasi C, Karaoz E. Immunoregulatory effects of human dental pulp-derived stem cells on T cells: comparison of transwell co-culture and mixed lymphocyte reaction systems. Cytotherapy. 2011;13(10):1205–20.

    PubMed  Google Scholar 

  25. Xu K, Xiao J, Zheng K, Feng X, Zhang J, Song D, Wang C, Shen X, Zhao X, Wei C, Huang D. MiR-21/STAT3 signal is involved in odontoblast differentiation of human dental pulp stem cells mediated by TNF-α. Cell Reprogram. 2018;20(2):107–16.

    PubMed  Google Scholar 

  26. Vigo T, La Rocca C, Faicchia D, Procaccini C, Ruggieri M, Salvetti M, Centonze D, Matarese G, Uccelli A. IFNβ enhances mesenchymal stromal (Stem) cells immunomodulatory function through STAT1-3 activation and mTOR-associated promotion of glucose metabolism. Cell Death Dis. 2019;10(2):1–8.

    Google Scholar 

  27. Kornicka K, Kocherova I, Marycz K. The effects of chosen plant extracts and compounds on mesenchymal stem cells—a bridge between molecular nutrition and regenerative medicine-concise review. Phytother Res. 2017;31(7):947–58.

    PubMed  Google Scholar 

  28. Das U, Behera SS, Pramanik K. Ethno-herbal-medico in wound repair: an incisive review. Phytotherapy Res. 2017;31(4):579–90.

    Google Scholar 

  29. Mohammadi A, Blesso CN, Barreto GE, Banach M, Majeed M, Sahebkar A. Macrophage plasticity, polarization and function in response to curcumin, a diet-derived polyphenol, as an immunomodulatory agent. J Nutr Biochem. 2019;1(66):1–6.

    Google Scholar 

  30. Kahkhaie KR, Mirhosseini A, Aliabadi A, Mohammadi A, Mousavi MJ, Haftcheshmeh SM, Sathyapalan T, Sahebkar A. Curcumin: a modulator of inflammatory signaling pathways in the immune system. Inflammopharmacology. 2019;27(5):885–900.

    PubMed  Google Scholar 

  31. Hassan FU, Rehman MS, Khan MS, Ali MA, Javed A, Nawaz A, Yang C. Curcumin as an alternative epigenetic modulator: mechanism of action and potential effects. Front Genet. 2019;4(10):514.

    Google Scholar 

  32. Ahangari N, Kargozar S, Ghayour-Mobarhan M, Baino F, Pasdar A, Sahebkar A, Ferns GA, Kim HW, Mozafari M. Curcumin in tissue engineering: a traditional remedy for modern medicine. BioFactors. 2019;45(2):135–51.

    PubMed  Google Scholar 

  33. Tuyaerts S, Rombauts K, Everaert T, Van Nuffel AM, Amant F. A phase 2 study to assess the immunomodulatory capacity of a lecithin-based delivery system of curcumin in endometrial cancer. Front Nutr. 2019;11(5):138.

    Google Scholar 

  34. Pastorelli D, Fabricio AS, Giovanis P, D’Ippolito S, Fiduccia P, Soldà C, Buda A, Sperti C, Bardini R, Da Dalt G, Rainato G. Phytosome complex of curcumin as complementary therapy of advanced pancreatic cancer improves safety and efficacy of gemcitabine: results of a prospective phase II trial. Pharmacol Res. 2018;1(132):72–9.

    Google Scholar 

  35. Marjaneh RM, Rahmani F, Hassanian SM, Rezaei N, Hashemzehi M, Bahrami A, Ariakia F, Fiuji H, Sahebkar A, Avan A, Khazaei M. Phytosomal curcumin inhibits tumor growth in colitis-associated colorectal cancer. J Cell Physiol. 2018;233(10):6785–98.

    PubMed  Google Scholar 

  36. Mirzaei H, Shakeri A, Rashidi B, Jalili A, Banikazemi Z, Sahebkar A. Phytosomal curcumin: a review of pharmacokinetic, experimental and clinical studies. Biomed Pharmacother. 2017;1(85):102–12.

    Google Scholar 

  37. Gronthos S, Arthur A, Bartold PM, Shi SA. method to isolate and culture expand human dental pulp stem cells. In: Mesenchymal stem cell assays and applications. Totowa: Humana Press; 2011. p. 107–21.

    Google Scholar 

  38. Al-Habib M, Huang GT. Dental mesenchymal stem cells: dental pulp stem cells, periodontal ligament stem cells, apical papilla stem cells, and primary teeth stem cells—isolation, characterization, and expansion for tissue engineering. Odontogenesis. 2019;1922:59–76.

  39. Ayadilord M, Nasseri S, Emadian Razavi F, Saharkhiz M, Rostami Z, Naseri M. Immunomodulatory effects of phytosomal curcumin on related-micro RNAs, CD200 expression and inflammatory pathways in dental pulp stem cells. Cell Biochem Funct. 2021. https://doi.org/10.1002/cbf.3659.

    Article  PubMed  Google Scholar 

  40. Zhu L, Dissanayaka WL, Zhang C. Dental pulp stem cells overexpressing stromal-derived factor-1α and vascular endothelial growth factor in dental pulp regeneration. Clin Oral Invest. 2019;23(5):2497–509.

    Google Scholar 

  41. Dissanayaka WL, Zhu L, Hargreaves KM, Jin L, Zhang C. Scaffold-free prevascularized microtissue spheroids for pulp regeneration. J Dent Res. 2014;93(12):1296–303.

    PubMed  PubMed Central  Google Scholar 

  42. Nakashima M, Iohara K, Murakami M, Nakamura H, Sato Y, Ariji Y, Matsushita K. Pulp regeneration by transplantation of dental pulp stem cells in pulpitis: a pilot clinical study. Stem Cell Res Therapy. 2017;8(1):1–3.

    Google Scholar 

  43. Fierro FA, Kalomoiris S, Sondergaard CS, Nolta JA. Effects on proliferation and differentiation of multipotent bone marrow stromal cells engineered to express growth factors for combined cell and gene therapy. Stem Cells. 2011;29(11):1727–37.

    PubMed  PubMed Central  Google Scholar 

  44. Zimta AA, Baru O, Badea M, Buduru SD, Berindan-Neagoe I. The role of angiogenesis and pro-angiogenic exosomes in regenerative dentistry. Int J Mol Sci. 2019;20(2):406.

    PubMed Central  Google Scholar 

  45. Hirata-Tsuchiya S, Fukushima H, Katagiri T, Ohte S, Shin M, Nagano K, Aoki K, Morotomi T, Sugiyama G, Nakatomi C, Kokabu S. Inhibition of BMP2-induced bone formation by the p65 subunit of NF-κB via an interaction with Smad4. Mol Endocrinol. 2014;28(9):1460–70.

    PubMed  PubMed Central  Google Scholar 

  46. Tarapore RS, Lim J, Tian C, Pacios S, Xiao W, Reid D, Guan H, Mattos M, Yu B, Wang CY, Graves DT. NF-κB has a direct role in inhibiting Bmp-and Wnt-induced matrix protein expression. J Bone Miner Res. 2016;31(1):52–64.

    PubMed  Google Scholar 

  47. Wang N, Zhou Z, Wu T, Liu W, Yin P, Pan C, Yu X. TNF-α-induced NF-κB activation upregulates microRNA-150–3p and inhibits osteogenesis of mesenchymal stem cells by targeting β-catenin. Open Biol. 2016;6(3): 150258.

    PubMed  PubMed Central  Google Scholar 

  48. Ma XX, Liu J, Wang CM, Zhou JP, He ZZ, Lin H. Low-dose curcumin stimulates proliferation of rat embryonic neural stem cells through glucocorticoid receptor and STAT 3. CNS Neurosci Ther. 2018;24(10):940–6.

    PubMed  PubMed Central  Google Scholar 

  49. Cao F, Hata R, Zhu P, Nakashiro KI, Sakanaka M. Conditional deletion of Stat3 promotes neurogenesis and inhibits astrogliogenesis in neural stem cells. Biochem Biophys Res Commun. 2010;394(3):843–7.

    PubMed  Google Scholar 

  50. Zhang DM, Li YC, Xu D, Ding XQ, Kong LD. Protection of curcumin against fructose-induced hyperuricaemia and renal endothelial dysfunction involves NO-mediated JAK–STAT signalling in rats. Food Chem. 2012;134(4):2184–93.

    PubMed  Google Scholar 

  51. Liu L, Liu YL, Liu GX, Chen X, Yang K, Yang YX, Xie Q, Gan HK, Huang XL, Gan HT. Curcumin ameliorates dextran sulfate sodium-induced experimental colitis by blocking STAT3 signaling pathway. Int Immunopharmacol. 2013;17(2):314–20.

    PubMed  Google Scholar 

  52. Sinjari B, Pizzicannella J, D’Aurora M, Zappacosta R, Gatta V, Fontana A, Trubiani O, Diomede F. Curcumin/liposome nanotechnology as delivery platform for anti-inflammatory activities via NFkB/ERK/pERK pathway in human dental pulp treated with 2-hydroxyethyl methacrylate (HEMA). Front Physiol. 2019;11(10):633.

    Google Scholar 

  53. Wang N, Wang F, Gao Y, Yin P, Pan C, Liu W, Zhou Z, Wang J. Curcumin protects human adipose-derived mesenchymal stem cells against oxidative stress-induced inhibition of osteogenesis. J Pharmacol Sci. 2016;132(3):192–200.

    PubMed  Google Scholar 

Download references

Acknowledgements

The writers appreciate Birjand University of Medical Sciences for supporting this research and also Dr. Seyed Mohammad Riahi, Cardiovascular Diseases Research Center, Department of Epidemiology and Biostatistics, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran, for providing assistance in the statistical analysis.

Funding

This research was financed by Birjand University of Medical Sciences, Iran (Grant no.456182).

Author information

Authors and Affiliations

Authors

Contributions

MS study design, executor of plan, analysis and interpretation of data and drafting of the manuscript. MA study design, executor of plan, analysis and interpretation of data and drafting of the manuscript. FER study design, edit and critical revision of the manuscript for important intellectual content. MN material support, study design, executor of plan, supervision and interpretation and analysis of data and edit of the manuscript.

Corresponding author

Correspondence to Mohsen Naseri.

Ethics declarations

Conflict of interest

There is no conflict of interest to declare.

Ethical approval

The research adheres to the guidelines of ethics committee of the Birjand University of medical sciences, Iran (ethical number: IR.BUMS.REC.1399.090).

Informed consent

Informed consent was obtained from participants included in the study.

Consent for publication

The participants consented to the publication of these data.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saharkhiz, M., Ayadilord, M., Emadian Razavi, F. et al. Effects of phytosomal curcumin treatment on modulation of immunomodulatory and pulp regeneration genes in dental pulp mesenchymal stem cells. Odontology 110, 287–295 (2022). https://doi.org/10.1007/s10266-021-00659-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10266-021-00659-4

Keywords

Navigation