Skip to main content
Log in

Implant-to-nasal floor dimensions projected by panoramic radiographs in the maxillary incisor–canine region: implications for dental implant treatment

  • Original Article
  • Published:
Odontology Aims and scope Submit manuscript

Abstract

To make a comparison of panoramic radiography (PAN) and cone-beam computed tomography (CBCT) determinations of implant-to-nasal floor dimensions (INFD) in the anterior maxillary region, and to assist in determining in which tooth regions additional radiation exposure involved in CBCT scans is justifiable. Data related to INFD by PAN (PAN-D) at implant-to-nasal floor sites (central incisor, lateral incisor, canine) were gathered using 141 implant sites from 119 adult patients. INFD was estimated employing the CBCT technique as a reference method. PAN analysis equations were created for estimation of INFD by CBCT (CBCT-D) specific to implant sites. For assessment of the agreement between the PAN and CBCT methodologies, the Bland–Altman approach was employed. There were robust and significant odds ratios that implants in the canine region would fall into the underestimation groups of > 0 mm (4.5:1) (p = 0.003), > 0.5 mm (6.2:1) (p < 0.001), and > 1 mm (5.4:1) (p = 0.002). The root mean squared error (RMSE) and pure error (PE) were highest for the canine region (RMSE = 1.973 mm, PE = 2.20 mm). This research offers evidence of site-specific underestimations of available horizontal bone dimensions for implants when PAN is employed to assess the availability of vertical bone dimensions. The data suggest that it may be necessary to exclude canine regions when making assessment of INFD through PAN. Use of CBCT may, therefore, be recommended for all implant size and angulation estimations in this region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Clark D, Barbu H, Lorean A, Mijiritsky E, Levin L. Incidental findings of implant complications on postimplantation CBCTs: a cross-sectional study. Clin Implant Dent Relat Res. 2017;19:776–82. https://doi.org/10.1111/cid.12511.

    Article  PubMed  Google Scholar 

  2. Wolff J, Karagozoglu KH, Bretschneider JH, Forouzanfar T, Schulten EA. Altered nasal airflow: an unusual complication following implant surgery in the anterior maxilla. Int J Implant Dent. 2016;2:6. https://doi.org/10.1186/s40729-016-0045-3.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gaêta-Araujo H, Oliveira-Santos N, Mancini AXM, Oliveira ML, Oliveira-Santos C. Retrospective assessment of dental implant-related perforations of relevant anatomical structures and inadequate spacing between implants/teeth using cone-beam computed tomography. Clin Oral Investig. 2020;24:3281–8. https://doi.org/10.1007/s00784-020-03205-8.

    Article  PubMed  Google Scholar 

  4. Raghoebar GM, van Weissenbruch R, Vissink A. Rhino-sinusitis related to endosseous implants extending into the nasal cavity. A case report. Int J Oral Maxillofac Surg. 2004;33:312–4.

    Article  Google Scholar 

  5. Cheng S, Cheng J, Huang W. Preliminary study of anatomic relation among nasopalatine duct, central incisor root and floor of nasal cavity with X-ray measurement. Zhonghua Kou Qiang Yi Xue Za Zhi. 1997;32:149–51.

    PubMed  Google Scholar 

  6. Taschieri S, Weinstein T, Rosano G, del Fabbro M. Morphological features of the maxillary incisor roots and relationship with neighbouring anatomical structures: possible implications in endodontic surgery. Int J Oral Maxillofac Surg. 2012;41:616–23.

    Article  Google Scholar 

  7. Ducommun J, Bornstein MM, Wong MCM, von Arx T. Distances of root apices to adjacent anatomical structures in the anterior maxilla: an analysis using cone beam computed tomography. Clin Oral Investig. 2019;23:2253–63. https://doi.org/10.1007/s00784-018-2650-4.

    Article  PubMed  Google Scholar 

  8. Gratt BM. Panoramic radiography. In: Goaz PW, White SC, editors. Oral radiology: principles and interpretation. 3rd ed. St Louis: Mosby; 1994. p. 242–4.

    Google Scholar 

  9. Owens AM, Johal A. Near-end of treatment panoramic radiograph in the assessment of mesiodistal root angulation. Angle Orthod. 2008;78:475–81. https://doi.org/10.2319/040107-161.1.

    Article  PubMed  Google Scholar 

  10. Samawi SS, Burke PH. Angular distortion in the orthopantomogram. Brit J Orthod. 1984;11:100–7. https://doi.org/10.1179/bjo.11.2.100.

    Article  Google Scholar 

  11. Mckee IW, Williamson PC, Lam EW, Heo G, Glover KE, Major PW. The accuracy of 4 panoramic units in the projection of mesiodistal tooth angulations. Am J Orthod Dentofacial Orthop. 2002;121:166–75. https://doi.org/10.1067/mod.2002.119435.

    Article  PubMed  Google Scholar 

  12. Bouwens DG, Cevidanes L, Ludlow JB, Phillips C. Comparison of mesiodistal root angulation with posttreatment panoramic radiographs and cone-beam computed tomography. Am J Orthod Dentofacial Orthop. 2011;139:126–32. https://doi.org/10.1016/j.ajodo.2010.05.016.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Peck JL, Sameshima GT, Miller A, Worth P, Hatcher DC. Mesiodistal root angulation using panoramic and cone beam CT. Angle Orthod. 2007;77:206–13. https://doi.org/10.2319/0003-3219(2007)077[0206:MRAUPA]2.0.CO;2.

    Article  PubMed  Google Scholar 

  14. Larheim TA, Svanaes DB. Reproducibility of rotational panoramic radiography: mandibular linear dimensions and angles. Am J Orthod Dentofacial Orthop. 1986;90:45–51. https://doi.org/10.1016/0889-5406(86)90026-0.

    Article  PubMed  Google Scholar 

  15. Schiff T, D’Ambrosio J, Glass BJ, Langlais RP, McDavid WD. Common positioning and technical errors in panoramic radiography. J Am Dent Assoc. 1986;113:422–6. https://doi.org/10.14219/jada.archive.1986.0212.

    Article  PubMed  Google Scholar 

  16. Mehra A, Pai KM. Evaluation of dimensional accuracy of panoramic cross-sectional tomography, its ability to identify the inferior alveolar canal, and its impact on estimation of appropriate implant dimensions in the mandibular posterior region. Clin Implant Dent Relat Res. 2012;14:100–11. https://doi.org/10.1111/j.1708-8208.2009.00226.x.

    Article  PubMed  Google Scholar 

  17. Gomez-Roman G, Lukas D, Beniashvili R, Schulte W. Area dependent enlargement rations of panoramic tomography on orthograde patient positioning and its significance for implant dentistry. Int J Oral Maxillofac Implants. 1999;14:248–57.

    PubMed  Google Scholar 

  18. McKee IW, Glover KE, Williamson PC, Lam EW, Heo G, Majaor PW. The effect of vertical and horizontal head positioning in panoramic radiography on mesiodistal tooth angulations. Angle Orthod. 2001;71:442–51. https://doi.org/10.1043/0003-3219(2001)071%3c0442:TEOVAH%3e2.0.CO;2.

    Article  PubMed  Google Scholar 

  19. White SC, Pharaoh MJ. Oral radiology: principles and interpretation. 6th ed. St. Louis: Mosby; 2008. p. 175–7.

    Google Scholar 

  20. Scarfe WC, Farman AG, Sukovic P. Clinical applications of cone-beam computed tomography in dental practice. J Can Dent Assoc. 2006;72:75–80.

    PubMed  Google Scholar 

  21. Kobayashi K, Shimoda S, Nakagawa Y, Yamamoto A. Accuracy in measurement of distance using limited cone-beam computerized tomography. Int J Oral Maxillofac Implants. 2004;19:228–31.

    PubMed  Google Scholar 

  22. Loubele M, Jacobs R, Maes F, Denis K, White S, Coudyzer W, et al. Image quality vs radiation dose of four cone beam computed tomography scanners. Dentomaxillofac Radiol. 2008;37:309–19. https://doi.org/10.1259/dmfr/16770531.

    Article  PubMed  Google Scholar 

  23. Ziegler CM, Woertche R, Brief J, Hassfeld S. Clinical indications for digital volume tomography in oral and maxillofacial surgery. Dentomaxillofac Radiol. 2002;31:126–30. https://doi.org/10.1038/sj/dmfr/4600680.

    Article  PubMed  Google Scholar 

  24. Bornstein MM, Scarfe WC, Vaughn VM, Jacobs R. Cone Beam Computed Tomography in implant dentistry: a systematic review focusing on guidelines, indications, and radiation dose risks. Int J Oral Maxillofac Implants. 2014;29(Suppl):55–77. https://doi.org/10.11607/jomi.2014suppl.g1.4.

    Article  PubMed  Google Scholar 

  25. De Vos W, Casselman J, Swennen GR. Cone-beam computerized tomography (CBCT) imaging of the oral and maxillofacial region: a systematic review of the literature. Int J Oral Maxillofac Surg. 2009;38:609–25.

    Article  Google Scholar 

  26. Botticelli S, Verna C, Cattaneo PM, Heidmann J, Melsen B. Two- versus three-dimensional imaging in subjects with unerupted maxillary canines. Eur J Orthod. 2011;33:344–9. https://doi.org/10.1093/ejo/cjq102.

    Article  PubMed  Google Scholar 

  27. Ludlow JB, Davies-Ludlow LE, Brooks SL. Dosimetry of two extraoral direct digital imaging devices: newTom cone beam CT and orthophos plus DS panoramic unit. Dentomaxillofac Radiol. 2003;32:229–34. https://doi.org/10.1259/dmfr/26310390.

    Article  PubMed  Google Scholar 

  28. Farman AG. ALARA still applies. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2005;100:395–7. https://doi.org/10.1016/j.tripleo.2005.05.055.

    Article  PubMed  Google Scholar 

  29. Harris D, Horner K, Gröndahl K, Jacobs R, Helmrot E, Benic GI, et al. Guidelines for the use of diagnostic imaging in implant dentistry 2011: update of the E.A.O. A consensus workshop organized by the European Association for Osseointegration in the Medical University of Warsaw, Poland. Clin Oral Implants Res. 2012;23:1243–53. https://doi.org/10.1111/j.1600-0501.2012.02441.x.

    Article  PubMed  Google Scholar 

  30. Tyndall DA, Price JB, Tetradis S, Ganz SD, Hildebolt C, Scarfe WC, American Academy of Oral and Maxillofacial Radiology. Position statement of the American Academy of Oral and Maxillofacial Radiology on selection criteria for the use of radiology in dental implantology with emphasis on cone beam computed tomography. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012;113:817–26. https://doi.org/10.1016/j.oooo.2012.03.005.

    Article  PubMed  Google Scholar 

  31. Faul F, Erdfelder E, Buchner A, Lang AG. Statistical power analyses using G* power 3.1: tests for correlation and regression analyses. Behav Res Methods. 2009;41:1149–60. https://doi.org/10.3758/BRM.41.4.1149.

    Article  PubMed  Google Scholar 

  32. Guo SS, Chumlea WC. Statistical methods for the development and testing of predictive equations. In: Roche AF, Heymsfield SB, Lohman TG, editors. Human body composition. Champaign: Human Kinetics; 1996. p. 191–202.

    Google Scholar 

  33. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;61:307–10.

    Article  Google Scholar 

  34. Mckee IW, Glover KE, Williamson PC, Lam EW, Heo G, Major PW. The effect of vertical and horizontal head positioning in panoramic radiography on mesiodistal tooth angulations. Angle Orthod. 2001;71:442–51. https://doi.org/10.1043/0003-3219(2001)071%3c0442:TEOVAH%3e2.0.CO;2.

    Article  PubMed  Google Scholar 

  35. Stramotas S, Geenty JP, Petocz P, Darendeliler MA. Accuracy of linear and angular measurements on panoramic radiographs taken at various positions in vitro. Eur J Orthod. 2002;24:43–52. https://doi.org/10.1093/ejo/24.1.43.

    Article  PubMed  Google Scholar 

  36. McDavid WD, Tronje G, Welander U, Morris CR. Dimensional reproduction in rotational panoramic radiography. Oral Surg Oral Med Oral Pathol. 1986;62:96–101. https://doi.org/10.1016/0030-4220(86)90079-4.

    Article  PubMed  Google Scholar 

  37. Scarfe WC, Nummikoski P, McDavid WD, Welander U, Tronje G. Radiographic interproximal angulations: implications for rotational panoramic radiography. Oral Surg Oral Med Oral Pathol. 1993;76:664–72. https://doi.org/10.1016/0030-4220(93)90079-j.

    Article  PubMed  Google Scholar 

  38. Chaushu S, Chaushu G, Becker A. Reliability of a method for the localization of displaced maxillary canines using a single panoramic radiograph. Clin Orthod Res. 1999;2:194–9. https://doi.org/10.1111/ocr.1999.2.4.194.

    Article  PubMed  Google Scholar 

  39. Yeo DK, Freer TJ, Brockhurst PJ. Distortions in panoramic radiographs. Aust Orthod J. 2002;18:92–8.

    PubMed  Google Scholar 

  40. Lucchesi MV, Wood RE, Nortje CJ. Suitability of the panoramic radiograph for assessment of mesiodistal angulation of teeth in the buccal segments of the mandible. Am J Orthod Dentofacial Orthop. 1988;94:303–10. https://doi.org/10.1016/0889-5406(88)90055-8.

    Article  PubMed  Google Scholar 

  41. Samawi SS, Burke PH. Angular distortion in the orthopantomogram. Br J Orthod. 1984;11:100–7. https://doi.org/10.1179/bjo.11.2.100.

    Article  PubMed  Google Scholar 

  42. Tsutsumi K, Chikui T, Okamura K, Yoshiura K. Accuracy of linear measurement and the measurement limits of thin objects with Cone Beam Computed Tomography: effects of measurement directions and of phantom locations in the fields of view. Int J Oral Maxillofac Implants. 2011;26:91–100.

    PubMed  Google Scholar 

  43. Peñarrocha M, Carrillo C, Boronat A, Peñarrocha M. Maximum use of the anterior maxillary buttress in severe maxillary atrophy with tilted, palatally positioned implants: a preliminary study. Int J Oral Maxillofac Implants. 2010;25:813–20.

    PubMed  Google Scholar 

  44. Royston P, Moons KG, Altman DG, Vergouwe Y. Prognosis and prognostic research: developing a prognostic model. BMJ. 2009;338:b604. https://doi.org/10.1136/bmj.b604.

    Article  PubMed  Google Scholar 

  45. Moons KG, Altman DG, Vergouwe Y, Royston P. Prognosis and prognostic research: application and impact of prognostic models in clinical practice. BMJ. 2009;338:b606. https://doi.org/10.1136/bmj.b606.

    Article  PubMed  Google Scholar 

  46. Kopecka D, Simunek A, Brazda T, Rota M, Slezak R, Capek L. Relationship between subsinus bone height and bone volume requirements for dental implants: a human radiographic study. Int J Oral Maxillofac Implants. 2012;26:48–54.

    Google Scholar 

  47. Temmerman A, Hertelé S, Teughels W, Dekeyser C, Jacobs R, Quirynen M. Are panoramic images reliable in planning sinus augmentation. Clin Oral Implants Res. 2011;22:189–94. https://doi.org/10.1111/j.1600-0501.2010.02000.x.

    Article  PubMed  Google Scholar 

  48. Sağlam AA. The vertical heights of maxillary and mandibular bones in panoramic radiographs of dentate and edentulous subjects. Quintessence Int. 2002;33:433–8.

    PubMed  Google Scholar 

  49. American Board of Orthodontics. Grading system for dental casts and panoramic radiographs. American Board of Orthodontics. St. Louis: Mosby; 2012. p. 17–8.

    Google Scholar 

  50. Fryback DG, Thornbury JR. The efficacy of diagnostic imaging. Med Decis Making. 1991;11:88–94. https://doi.org/10.1177/0272989X9101100203.

    Article  PubMed  Google Scholar 

  51. Guerrero ME, Botetano R, Beltran J, Horner K, Jacobs R. Can imaging help to predict postoperative outcome after wisdom tooth removal? A randomized controlled trial using panoramic radiography versus cone-beam CT. Clin Oral Investig. 2014;18:335–42. https://doi.org/10.1007/s00784-013-0971-x.

    Article  PubMed  Google Scholar 

  52. Korn P, Elschner C, Schulz MC, Range U, Mai R, Scheler U. MRI and dental implantology: two which do not exclude each other. Biomaterials. 2015;53:634–45. https://doi.org/10.1016/j.biomaterials.2015.02.114.

    Article  PubMed  Google Scholar 

  53. Flügge T, Hövener JB, Ludwig U, Eisenbeiss AK, Spittau B, Hennig J, et al. Magnetic resonance imaging of intraoral hard and soft tissues using an intraoral coil and FLASH sequences. Eur Radiol. 2016;26:4616–23. https://doi.org/10.1007/s00330-016-4254-1.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Juerchott A, Freudlsperger C, Zingler S, Saleem MA, Jende JME, Lux CJ, et al. In vivo reliability of 3D cephalometric landmark determination on magnetic resonance imaging: a feasibility study. Clin Oral Investig. 2020;24:1339–49. https://doi.org/10.1007/s00784-019-03015-7.

    Article  PubMed  Google Scholar 

  55. Pauwels R, Stamatakis H, Bosmans H, Bogaerts R, Jacobs R, Horner K, et al. Quantification of metal artifacts on cone beam computed tomography images. Clin Oral Implants Res. 2013;24:94–9. https://doi.org/10.1111/j.1600-0501.2011.02382.x.

    Article  PubMed  Google Scholar 

  56. Schulze RK, Berndt D, d’Hoedt B. On cone-beam computed tomography artifacts induced by titanium implants. Clin Oral Implants Res. 2010;21:100–7. https://doi.org/10.1111/j.1600-0501.2009.01817.x.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rüdiger Emshoff.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest related to this article.

Ethical approval

The study was approved by the Medical Ethical Committee of the Martin-Luther University Institutional Review Board (ethics approval No. 2020-034).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertram, A., Eckert, A.W. & Emshoff, R. Implant-to-nasal floor dimensions projected by panoramic radiographs in the maxillary incisor–canine region: implications for dental implant treatment. Odontology 110, 171–182 (2022). https://doi.org/10.1007/s10266-021-00632-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10266-021-00632-1

Keywords

Navigation