Skip to main content

Advertisement

Log in

Bone metabolism of the jaw in response to bisphosphonate: a quantitative analysis of bone scintigraphy images

  • Original Article
  • Published:
Odontology Aims and scope Submit manuscript

Abstract

We examined the changes in the bone metabolism of the jaw in response to BP treatment, and we used bone SPECT-CT to analyze the site-specific bone metabolism between the jaw and other sites of bone. We compared the changes in the bone metabolism of each part of bone in response to BP treatment by performing a quantitative analysis of bone scintigraphy images between patients treated with low-dose BP for osteoporosis (LBP group; n = 17), those treated with high-dose BP for metastatic bone tumor (HBP group; n = 11), and patients with other oral disease who required bone scintigraphy, with no history of BP treatment (control group; n = 40). The study endpoint was the mean standardized uptake value (SUV) of the uptake of Tc-99 m methylene diphosphonate (MDP) in each group. The mean SUVs of the HBP group were significantly lower at the axial bone of the cervical vertebra, thoracic vertebra, sternum, and rib compared to those of the LBP and control groups. The LBP group's mean SUV was significantly higher at the temporal bone, the anodontia part of the alveolar bone in maxilla, the vital teeth part of alveolar bone in the mandible, and the temporomandibular joint. There was no significant difference among the three groups at the mandibular angle and mandibular ramus. Our analyses revealed that the bone metabolism of the jaw and temporal bone in the BP-treated patients was enhanced, and no suppression of bone remodeling in the jaw by BP was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ruggiero SL, Dodson TB, Fantasia J, Goodday R, Aghaloo T, Mehrotra B, et al. American association of oral and maxillofacial surgeons position paper on medication-related osteonecrosis of the jaw–2014 update. J Oral Maxillofac Surg. 2014;72(10):1938–56. https://doi.org/10.1016/j.joms.2014.04.031.

    Article  PubMed  Google Scholar 

  2. Marx RE. Pamidronate (Aredia) and zoledronate (Zometa) induced avascular necrosis of the jaws: a growing epidemic. J Oral Maxillofac Surg. 2003;61(9):1115–7.

    Article  PubMed  Google Scholar 

  3. Migliorati CA. Bisphosphanates and oral cavity avascular bone necrosis. J Clin Oncol. 2003;21(22):4253–4. https://doi.org/10.1200/JCO.2003.99.132.

    Article  PubMed  Google Scholar 

  4. Kaneta T, Ogawa M, Daisaki H, Nawata S, Yoshida K, Inoue T. SUV measurement of normal vertebrae using SPECT/CT with Tc-99m methylene diphosphonate. Am J Nuclear Med Mol Imag. 2016;6(5):262–8.

    Google Scholar 

  5. Win AZ, Aparici CM. Normal SUV values measured from NaF18-PET/CT bone scan studies. PloS ONE. 2014;9(9):e108429. https://doi.org/10.1371/journal.pone.0108429.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ohbayashi Y, Nakai F, Iwasaki A, Ogawa T, Yamamoto Y, Nishiyama Y, et al. The utility of bone scintigraphy in the assessment of mandibular metabolism during long-term bisphosphonate administration. Odontology. 2017;105(3):382–90. https://doi.org/10.1007/s10266-016-0279-9.

    Article  PubMed  Google Scholar 

  7. Thomas C, Spanidis M, Engel C, Roos FC, Frees S, Neisius A, et al. Bone scintigraphy predicts bisphosphonate-induced osteonecrosis of the jaw (BRONJ) in patients with metastatic castration-resistant prostate cancer (mCRPC). Clin Oral Investig. 2016;20(4):753–8. https://doi.org/10.1007/s00784-015-1563-8.

    Article  PubMed  Google Scholar 

  8. O'Ryan FS, Khoury S, Liao W, Han MM, Hui RL, Baer D, et al. Intravenous bisphosphonate-related osteonecrosis of the jaw: bone scintigraphy as an early indicator. J Oral Maxillofac. 2009;67(7):1363–72. https://doi.org/10.1016/j.joms.2009.03.005.

    Article  Google Scholar 

  9. Hong CM, Ahn BC, Choi SY, Kim DH, Lee SW, Kwon TG, et al. Implications of three-phase bone scintigraphy for the diagnosis of bisphosphonate-related osteonecrosis of the jaw. Nuclear Med Mol Imag. 2012;46(3):162–8. https://doi.org/10.1007/s13139-012-0144-x.

    Article  Google Scholar 

  10. Allen MR. Medication-related osteonecrosis of the jaw: basic and translational science updates. Oral Maxillofac Surg Clin N Am. 2015;27(4):497–508. https://doi.org/10.1016/j.coms.2015.06.002.

    Article  Google Scholar 

  11. Woo SB, Hellstein JW, Kalmar JR. Narrative [corrected] review: bisphosphonates and osteonecrosis of the jaws. Ann Intern Med. 2006;144(10):753–61.

    Article  PubMed  Google Scholar 

  12. Reid IR, Bolland MJ, Grey AB. Is bisphosphonate-associated osteonecrosis of the jaw caused by soft tissue toxicity? Bone. 2007;41(3):318–20. https://doi.org/10.1016/j.bone.2007.04.196.

    Article  PubMed  Google Scholar 

  13. Khan RA, Hughes S, Lavender P, Leon M, Spyrou N. Autoradiography of technetium-labelled diphosphonate in rat bone. J Bone Joint Surg Br. 1979;61(2):221–4.

    Article  PubMed  Google Scholar 

  14. Francis MD, Ferguson DL, Tofe AJ, Bevan JA, Michaels SE. Comparative evaluation of three diphosphonates: in vitro adsorption (C-14 labeled) and in vivo osteogenic uptake (Tc-99m complexed). J Nucl Med. 1980;21(12):1185–9.

    PubMed  Google Scholar 

  15. Christensen SB, Arnold CC. Distribution of 99mTc-phosphate compounds in osteoarthritic femoral heads. J Bone Joint Surg Am. 1980;62(1):90–6.

    Article  PubMed  Google Scholar 

  16. Kanishi D. 99mTc-MDP accumulation mechanisms in bone. Oral Surg Oral Med Oral Pathol. 1993;75(2):239–46.

    Article  PubMed  Google Scholar 

  17. Christensen SB, Krogsgaard OW. Localization of Tc-99m MDP in epiphyseal growth plates of rats. J Nucl Med. 1981;22(3):237–45.

    PubMed  Google Scholar 

  18. Savelkoul TJ, Visser WJ, Oldenburg SJ, Duursma SA. A micro-autoradiographical study of the localization of 99mTc(Sn)-MDP and 99mTc-MDP in undecalcified bone sections. Eur J Nucl Med. 1986;11(11):459–62.

    Article  PubMed  Google Scholar 

  19. Budd RS, Hodgson GS, Hare WS. The relation of radionuclide uptake by bone to the rate of calcium mineralization II: patient studies using 99Tcm-MDP. Br J Radiol. 1989;62(736):318–20. https://doi.org/10.1259/0007-1285-62-736-318.

    Article  PubMed  Google Scholar 

  20. Lausten GS, Christensen SB. Distribution of 99mTc-phosphate compounds in osteonecrotic femoral heads. Acta Orthop Scand. 1989;60(4):419–23.

    Article  PubMed  Google Scholar 

  21. Puri T, Frost ML, Curran KM, Siddique M, Moore AE, Cook GJ, et al. Differences in regional bone metabolism at the spine and hip: a quantitative study using (18)F-fluoride positron emission tomography. Osteop Int. 2013;24(2):633–9. https://doi.org/10.1007/s00198-012-2006-x.

    Article  Google Scholar 

  22. Cheng C, Heiss C, Dimitrakopoulou-Strauss A, Govindarajan P, Schlewitz G, Pan L, et al. Evaluation of bone remodeling with (18)F-fluoride and correlation with the glucose metabolism measured by (18)F-FDG in lumbar spine with time in an experimental nude rat model with osteoporosis using dynamic PET-CT. Am J Nuclear Med Mol Imag. 2013;3(2):118–28.

    Google Scholar 

  23. Frost ML, Siddique M, Blake GM, Moore AE, Schleyer PJ, Dunn JT, et al. Differential effects of teriparatide on regional bone formation using (18)F-fluoride positron emission tomography. J Bone Miner Res. 2011;26(5):1002–111. https://doi.org/10.1002/jbmr.305.

    Article  PubMed  Google Scholar 

  24. Kobayashi N, Inaba Y, Tateishi U, Yukizawa Y, Ike H, Inoue T, et al. New application of 18F-fluoride PET for the detection of bone remodelling in early-stage osteoarthritis of the hip. Clin Nuclear Med. 2013;38(10):e379–e383383. https://doi.org/10.1097/RLU.0b013e31828d30c0.

    Article  Google Scholar 

  25. Austin AG, Raynor WY, Reilly CC, Zadeh MZ, Werner TJ, Zhuang H, et al. Evolving role of MR imaging and PET in assessing osteoporosis. PET Clin. 2019;14(1):31–41. https://doi.org/10.1016/j.cpet.2018.08.007.

    Article  PubMed  Google Scholar 

  26. Suenaga H, Yokoyama M, Yamaguchi K, Sasaki K. Bone metabolism of residual ridge beneath the denture base of an RPD observed using NaF-PET/CT. J Prosthodont Res. 2012;56(1):42–6. https://doi.org/10.1016/j.jpor.2011.04.002.

    Article  PubMed  Google Scholar 

  27. Manolagas SC. Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endoc Rev. 2000;21(2):115–37. https://doi.org/10.1210/edrv.21.2.0395.

    Article  Google Scholar 

  28. Civitelli R, Gonnelli S, Zacchei F, Bigazzi S, Vattimo A, Avioli LV, et al. Bone turnover in postmenopausal osteoporosis effect of calcitonin treatment. J Clin Invest. 1988;82(4):1268–74. https://doi.org/10.1172/JCI113725.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Caniggia A, Vattimo A. Kinetics of 99mtechnetium-tin-methylene-diphosphonate in normal subjects and pathological conditions: a simple index of bone metabolism. Calcif Tissue Int. 1980;30(1):5–13.

    Article  PubMed  Google Scholar 

  30. Davie MW, Britton JM, Haddaway M, McCall IW. 99mTc-MDP retention in osteoporosis: relationship to other indices of bone cell activity and response to calcium and vitamin D therapy. Eur J Nucl Med. 1987;13(9):462–6.

    Article  PubMed  Google Scholar 

  31. Frost ML, Fogelman I, Blake GM, Marsden PK, Cook G Jr. Dissociation between global markers of bone formation and direct measurement of spinal bone formation in osteoporosis. J Bone Min Res. 2004;19(11):1797–804. https://doi.org/10.1359/JBMR.040818.

    Article  Google Scholar 

  32. Israel O, Lubushitzky R, Frenkel A, Iosilevsky G, Bettman L, Gips S, et al. Bone turnover in cortical and trabecular bone in normal women and in women with osteoporosis. J Nucl Med. 1994;35(7):1155–8.

    PubMed  Google Scholar 

  33. Carnevale V, Dicembrino F, Frusciante V, Chiodini I, Minisola S, Scillitani A. Different patterns of global and regional skeletal uptake of 99mTc-methylene diphosphonate with age: relevance to the pathogenesis of bone loss. J Nucl Med. 2000;41(9):1478–83.

    PubMed  Google Scholar 

  34. Uchida K, Nakajima H, Miyazaki T, Yayama T, Kawahara H, Kobayashi S, et al. Effects of alendronate on bone metabolism in glucocorticoid-induced osteoporosis measured by 18F-fluoride PET: a prospective study. J Nucl Med. 2009;50(11):1808–14. https://doi.org/10.2967/jnumed.109.062570.

    Article  PubMed  Google Scholar 

  35. Suh MS, Lee WW, Kim YK, Yun PY, Kim SE. Maximum Standardized Uptake Value of (99m)Tc Hydroxymethylene diphosphonate SPECT/CT for the evaluation of temporomandibular joint disorder. Radiology. 2016;280(3):890–6. https://doi.org/10.1148/radiol.2016152294.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fumi Nakai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee [the Kagawa University Ethical Committee (H24–#106)] and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakai, F., Ohbayashi, Y., Nakai, Y. et al. Bone metabolism of the jaw in response to bisphosphonate: a quantitative analysis of bone scintigraphy images. Odontology 108, 653–660 (2020). https://doi.org/10.1007/s10266-020-00503-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10266-020-00503-1

Keywords

Navigation