Skip to main content

Advertisement

Log in

Effect of self-etch adhesives on the internal adaptation of composite restoration: a CP-OCT Study

  • Original Article
  • Published:
Odontology Aims and scope Submit manuscript

Abstract

Despite improvements in dental adhesive materials, internal adaptation remains a challenge in bonded restorations. The aim of this study was to compare microgaps and internal floor adaptation between two different self-etch adhesives in class-V cavities using cross-polarization optical coherence tomography (CP-OCT). In this in vitro study, standardized round class-V cavities were prepared in 20 non-carious human upper central incisor teeth. They were randomly divided into two groups, TN and SE, with each group receiving a different dental adhesive. In TN group, the adhesive used was all-in-one Tetric N-Bond Self-Etch (TN; Ivoclar/Vivadent, Liechtenstein), while SE group was bonded with two-step self-etch Clearfil SE Bond 2 adhesive (SE; Kuraray Noritake Dental Inc, Japan). The prepared cavities were restored with flowable composite and then stored in distilled water for 24 h. Next, they were immersed in silver nitrate, followed by immersion in a photo-developing solution. Optical comparison was carried out by CP-OCT to assess microgaps and composite adaptation at the cavity floor. A Mann–Whitney test was applied to the data, which showed a statistically significant difference in composite adaptation among the two groups (p < 0.001) with the SE group showing superior adaptation. CP-OCT is a reliable tool for non-invasive imaging that gives an insight into composite performance. Better adaptation was found with the two-step self-adhesive for the composite used in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tay FR, Pashley DH. Dental adhesives of the future. J Adhes Dent. 2002;4(2):91–103.

    PubMed  Google Scholar 

  2. De Munck J, Van Landuyt K, Peumans M, Poitevin A, Lambrechts P, Braem M, et al. A critical review of the durability of adhesion to tooth tissue: methods and results. J Dent Res. 2005;84(2):118–32.

    Article  Google Scholar 

  3. Sofan E, Sofan A, Palaia G, Tenore G, Romeo U, Migliau G. Classification review of dental adhesive systems: from the IV generation to the universal type. Ann Stomatol. 2017;8(1):1–17.

    Article  Google Scholar 

  4. Swift EJ. Jr. Dentin bonding: what is the state of the art? Compend Contin Educ Dent. 2001;22:4–7 (quiz 18).

    PubMed  Google Scholar 

  5. Hashimoto M, Ito S, Tay FR, Svizero NR, Sano H, Kaga M, et al. Fluid movement across the resin-dentin interface during and after bonding. J Dent Res. 2004;83(11):843–8.

    Article  Google Scholar 

  6. Bakhsh TA, Sadr A, Shimada Y, Tagami J, Sumi Y. Non-invasive quantification of resin-dentin interfacial gaps using optical coherence tomography: validation against confocal microscopy. Dent Mater. 2011;27(9):915–25.

    Article  PubMed  Google Scholar 

  7. Shimada Y, Nakagawa H, Sadr A, Wada I, Nakajima M, Nikaido T, et al. Noninvasive cross-sectional imaging of proximal caries using swept-source optical coherence tomography (SS-OCT) in vivo. J Biophotonics. 2014;7(7):506–13.

    Article  PubMed  Google Scholar 

  8. Fercher AF, Mengedoht K, Werner W. Eye-length measurement by interferometry with partially coherent light. Opt Lett. 1988;13(3):186–8.

    Article  PubMed  Google Scholar 

  9. Sinescu C, Negrutiu ML, Nica L, Manescu A, Duma V-F, Podoleanu AG, editors. MicroCT and optical coherence tomography imagistic assessment of the dental roots adhesive. In: Proc. SPIE 9417, Medical Imaging. 2015; Biomedical applications in molecular, structural, and functional imaging: 94170U.

  10. Castonguay A, Lefebvre J, Pouliot P, Lesage F. Comparing three-dimensional serial optical coherence tomography histology to MRI imaging in the entire mouse brain. J Biomed Opt. 2018;23(1):016008.

    Article  Google Scholar 

  11. Jing J, Li J, Li X, Yin J, Zhang J, Hoang K, et al. Advances in a fully integrated intravascular OCT-ultrasound system for cardiovascular imaging. In: Proc. SPIE 8213. 2012; Optical coherence tomography and coherence domain optical methods in biomedicine vol XVI, pp 82130Y.

  12. Espigares J, Sadr A, Hamba H, Shimada Y, Otsuki M, Tagami J, et al. Assessment of natural enamel lesions with optical coherence tomography in comparison with microfocus X-ray computed tomography. J Med Imaging. 2015;2(1):014001.

    Article  Google Scholar 

  13. Wilder-Smith P, Lee K, Guo S, Zhang J, Osann K, Chen Z, et al. In vivo diagnosis of oral dysplasia and malignancy using optical coherence tomography: preliminary studies in 50 patients. Lasers Surg Med. 2009;41(5):353–7.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wang Y, Bower BA, Izatt JA, Tan O, Huang D. Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography. J Biomed Opt. 2008;13(6):064003.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Colston B, Sathyam U, Dasilva L, Everett M, Stroeve P, Otis L. Dental OCT. Opt Express. 1998;3(6):230–8.

    Article  PubMed  Google Scholar 

  16. Lenton P, Rudney J, Fok A, Jones RS. Clinical cross-polarization optical coherence tomography assessment of subsurface enamel below dental resin composite restorations. J Med Imaging. 2014;1(1):016001.

    Article  Google Scholar 

  17. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, et al. Optical coherence tomography. Science. 1991;254(5035):1178–81.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Shimada Y, Sadr A, Burrow MF, Tagami J, Ozawa N, Sumi Y. Validation of swept-source optical coherence tomography (SS-OCT) for the diagnosis of occlusal caries. J Dent. 2010;38(8):655–65.

    Article  Google Scholar 

  19. Shimada Y, Sadr A, Nazari A, Nakagawa H, Otsuki M, Tagami J, et al. 3D evaluation of composite resin restoration at practical training using swept-source optical coherence tomography (SS-OCT). Dent Mater J. 2012;31(3):409–17.

    Article  PubMed  Google Scholar 

  20. Makishi P, Shimada Y, Sadr A, Tagami J, Sumi Y. Non-destructive 3D imaging of composite restorations using optical coherence tomography: marginal adaptation of self-etch adhesives. J Dent. 2011;39:316–25.

    Article  PubMed  Google Scholar 

  21. Makishi P, Thitthaweerat S, Sadr A, Shimada Y, Martins AL, Tagami J, et al. Assessment of current adhesives in class I cavity: nondestructive imaging using optical coherence tomography and microtensile bond strength. Dent Mater. 2015;31(9):e190–200.

    Article  PubMed  Google Scholar 

  22. Bista B, Sadr A, Nazari A, Shimada Y, Sumi Y, Tagami J. Nondestructive assessment of current one-step self-etch dental adhesives using optical coherence tomography. J Biomed Opt. 2013;18(7):76020.

    Article  PubMed  Google Scholar 

  23. Imai K, Shimada Y, Sadr A, Sumi Y, Tagami J. Noninvasive cross-sectional visualization of enamel cracks by optical coherence tomography in vitro. J Endod. 2012;38(9):1269–74.

    Article  PubMed  Google Scholar 

  24. Bakhsh TA, Bakry AS, Mandurah MM, Abbassy MA. Novel evaluation and treatment techniques for white spot lesions. An in vitro study. Orthod Craniofac Res. 2017;20(3):170–6.

    Article  PubMed  Google Scholar 

  25. Nee A, Chan K, Kang H, Staninec M, Darling CL, Fried D. Longitudinal monitoring of demineralization peripheral to orthodontic brackets using cross polarization optical coherence tomography. J Dent. 2014;42(5):547–55.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lammeier C, Li Y, Lunos S, Fok A, Rudney J, Jones RS. Influence of dental resin material composition on cross-polarization-optical coherence tomography imaging. J Biomed Opt. 2012;17(10):106002.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Makishi P, Shimada Y, Sadr A, Tagami J, Sumi Y. Non-destructive 3D imaging of composite restorations using optical coherence tomography: marginal adaptation of self-etch adhesives. J Dent. 2011;39(4):316–25.

    Article  PubMed  Google Scholar 

  28. Liu B, Brezinski ME. Theoretical and practical considerations on detection performance of time domain, Fourier domain, and swept source optical coherence tomography. J Biomed Opt. 2007;12(4):044007.

    Article  PubMed  Google Scholar 

  29. Bakhsh TA, Sadr A, Shimada Y, Mandurah MM, Hariri I, Alsayed EZ, et al. Concurrent evaluation of composite internal adaptation and bond strength in a class-I cavity. J Dent. 2013;41(1):60–70.

    Article  PubMed  Google Scholar 

  30. Sadr A, Mayoral Molina JR, Shimada Y, Bakhsh TA, Cho E, Tagami J. Real-time tomographic monitoring of composite restoration placement using SS-OCT. J Dent Res. 2010;2010:1501.

    Google Scholar 

  31. Sadr A, Shimada Y, Mayoral JR, Hariri I, Bakhsh TA, Sumi S, et al. Swept source optical coherence tomography for quantitative and qualitative assessment of dental composite restorations. Proc SPIE Lasers Dent XVII. 2011;7884:78840C.

    Article  Google Scholar 

  32. Hariri I, Sadr A, Shimada Y, Tagami J, Sumi Y. Effects of structural orientation of enamel and dentine on light attenuation and local refractive index: an optical coherence tomography study. J Dent. 2012;40(5):387–96.

    Article  Google Scholar 

  33. Mandurah MM, Sadr A, Shimada Y, Kitasako Y, Nakashima S, Bakhsh TA, et al. Monitoring remineralization of enamel subsurface lesions by optical coherence tomography. J Biomed Opt. 2013;18(4):046006.

    Article  PubMed  Google Scholar 

  34. Turkistani A, Sadr A, Shimada Y, Nikaido T, Sumi Y, Tagami J. Sealing performance of resin cements before and after thermal cycling: evaluation by optical coherence tomography. Dent Mater. 2014;30(9):993–1004.

    Article  PubMed  Google Scholar 

  35. Simon JC, Kang H, Staninec M, Jang AT, Chan KH, Darling CL, et al. Near-IR and CP-OCT imaging of suspected occlusal caries lesions. Lasers Surg Med. 2017;49(3):215–24.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Turkistani A, Almutairi M, Banakhar N, Rubehan R, Mugharbil S, Jamleh A, et al. Optical evaluation of enamel microleakage with one-step self-etch adhesives. Photomed Laser Surg. 2018. https://doi.org/10.1089/pho.2018.4441.

    Article  PubMed  Google Scholar 

  37. Bakhsh TA, Eldesouky MH, Almaghamsi S, Al Thafere NJ, Hussein A, Turkistani A, et al. Optical quantification of microgaps at dentin-composite interface. Biomed Phys Eng Express. 2018. https://doi.org/10.1088/2057-1976/aac9f2.

    Article  Google Scholar 

  38. Bakhsh TA, Sadr A, Mandurah MM, Shimada Y, Zakaria O, Tagami J. In situ characterization of resin-dentin interfaces using conventional vs. cryofocused ion-beam milling. Dent Mater. 2015;31(7):833–44.

    Article  PubMed  Google Scholar 

  39. Giannini M, Makishi P, Ayres AP, Vermelho PM, Fronza BM, Nikaido T, et al. Self-etch adhesive systems: a literature review. Braz Dent J. 2015;26(1):3–10.

    Article  PubMed  Google Scholar 

  40. Toledano M, Osorio R, Albaladejo A, Aguilera FS, Osorio E. Differential effect of in vitro degradation on resin-dentin bonds produced by self-etch versus total-etch adhesives. J Biomed Mater Res A. 2006;77(1):128–35.

    Article  PubMed  Google Scholar 

  41. Ozer F, Blatz MB. Self-etch and etch-and-rinse adhesive systems in clinical dentistry. Compend Contin Educ Dent. 2013;34(1):12-4, 6, 8 (quiz 20, 30).

    Google Scholar 

  42. Bakhsh TA, Al-Zayer M, Al-Sahwan N, Al-Bahrani Z, Bakry AS, Jamleh AO, Al-Sayed EZ, Mandurah M, Abbassy M. Comparative SEM observation of silver-nitrate at resin-dentin interface: nanoleakage study. Oral Health Care. 2017;2(2):1–5.

    Article  Google Scholar 

  43. Yuan Y, Shimada Y, Ichinose S, Tagami J. Effect of dentin depth on hybridization quality using different bonding tactics in vivo. J Dent. 2007;35(8):664–72.

    Article  PubMed  Google Scholar 

  44. Peumans M, De Munck J, Van Landuyt KL, Poitevin A, Lambrechts P, Van Meerbeek B. Eight-year clinical evaluation of a 2-step self-etch adhesive with and without selective enamel etching. Dent Mater. 2010;26(12):1176–84.

    Article  Google Scholar 

  45. Tay FR, Gwinnett JA, Wei SH. Relation between water content in acetone/alcohol-based primer and interfacial ultrastructure. J Dent. 1998;26(2):147–56.

    Article  PubMed  Google Scholar 

  46. Bakhsh TA, Abumansour M, Shuman M, Alshouibi E, Jamleh A. Time sensitivity associated with the application of water-based all-in-one adhesive system. Cogent Eng. 2018. https://doi.org/10.1080/23311916.2018.1472052.

    Article  Google Scholar 

  47. Felizardo KR, Lemos LV, de Carvalho RV, Gonini Junior A, Lopes MB, Moura SK. Bond strength of HEMA-containing versus HEMA-free self-etch adhesive systems to dentin. Braz Dent J. 2011;22(6):468–72.

    Article  PubMed  Google Scholar 

  48. Nurrohman H, Nikaido T, Takagaki T, Sadr A, Ichinose S, Tagami J. Apatite crystal protection against acid-attack beneath resin-dentin interface with four adhesives: TEM and crystallography evidence. Dent Mater. 2012;28(7):e89–98.

    Article  PubMed  Google Scholar 

  49. Nikaido T, Nurrohman H, Takagaki T, Sadr A, Ichinose S, Tagami J. Nanoleakage in hybrid layer and acid-base resistant zone at the adhesive/dentin interface. Microsc Microanal. 2015;21(5):1271–7.

    Article  PubMed  Google Scholar 

  50. Inoue G, Nikaido T, Foxton RM, Tagami J. The acid-base resistant zone in three dentin bonding systems. Dent Mater J. 2009;28(6):717–21.

    Article  PubMed  Google Scholar 

  51. Inoue G, Tsuchiya S, Nikaido T, Foxton RM, Tagami J. Morphological and mechanical characterization of the acid-base resistant zone at the adhesive-dentin interface of intact and caries-affected dentin. Oper Dent. 2006;31(4):466–72.

    Article  PubMed  Google Scholar 

  52. Yoshimine N, Shimada Y, Tagami J, Sadr A. Interfacial adaptation of composite restorations before and after light curing: effects of adhesive and filling technique. J Adhes Dent. 2015;17(4):329–36.

    PubMed  Google Scholar 

  53. Han SH, Sadr A, Tagami J, Park SH. Non-destructive evaluation of an internal adaptation of resin composite restoration with swept-source optical coherence tomography and micro-CT. Dent Mater. 2016;32(1):e1–7.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Academy of International Medical Center, Jeddah, Saudi Arabia and partly by Saudi Dental Research group (SDR). The authors therefore acknowledge with thanks the International Medical Center and SDR for technical support. We would also like to show our gratitude to Muhannad Shuman, Malek Eldesouky, Nadyah Althafir, Shahad Almaghamsi and Ather Aljarullah for their assistance in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Turki A. Bakhsh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakhsh, T.A., Altouki, N.H., Baeesa, L.S. et al. Effect of self-etch adhesives on the internal adaptation of composite restoration: a CP-OCT Study. Odontology 107, 165–173 (2019). https://doi.org/10.1007/s10266-018-0381-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10266-018-0381-2

Keywords

Navigation