Skip to main content
Log in

A Note on the Dynamics of the Logistic Family Modified by Fuzzy Numbers

  • Published:
Acta Mathematicae Applicatae Sinica, English Series Aims and scope Submit manuscript

Abstract

In this paper, we consider a modification of the well-known logistic family using a family of fuzzy numbers. The dynamics of this modified logistic map is studied by computing its topological entropy with a given accuracy. This computation allows us to characterize when the dynamics of the modified family is chaotic. Besides, some attractors that appear in bifurcation diagrams are explained. Finally, we will show that the dynamics induced by the logistic family on the fuzzy numbers need not be complicated at all.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adler, R.L., Konheim, A.G., McAndrew, M.H. Topological entropy. Trans. Amer. Math. Soc., 114: 309–319 (1965)

    Article  MathSciNet  Google Scholar 

  2. Alsedá, L., Llibre, J., Misiurewicz, M. Combinatorial dynamics and entropy in dimension one. World Scientific Publishing, Singapoore, 1993

    Book  Google Scholar 

  3. Balibrea, F., Jiménez, V. The measure of scrambled sets: a survey. Acta Univ. M. Belli Ser. Math., 7: 3–11 (1999)

    MathSciNet  MATH  Google Scholar 

  4. Banerjee, S., Parthsarathy, R. A q-deformed logistic map and its implications. J. Phys. A, 44: 045104 (2011)

    Article  MathSciNet  Google Scholar 

  5. Behnia, S., Yahyavi, M., Habibpourbisafar, R. Watermarking based on discrete wavelet transform and q-deformed chaotic map. Chaos, Solitons Fractals, 104: 6–17 (2017)

    Article  Google Scholar 

  6. Blanchard, F., Glasner, E., Kolyada, S. Maass, A. On Li-Yorke pairs. J. Reine Angew. Math., 547: 51–68 (2002)

    MathSciNet  MATH  Google Scholar 

  7. Block, L., Keesling, J., Li, S. H., Peterson, K. An improved algorithm for computing topological entropy. J. Stat. Phys., 55: 929–939 (1989)

    Article  MathSciNet  Google Scholar 

  8. Cánovas, J. S., Kupka, J. On the topological entropy on the space of fuzzy numbers. Fuzzy Sets Syst., 257: 132–145 (2014)

    Article  MathSciNet  Google Scholar 

  9. Cánovas, J. S., Muñoz-Guillermo, M. Computing topological entropy for periodic sequences of unimodal maps. Comm. Nonlinear Sci. Numer. Simul., 19: 3119–3127 (2014)

    Article  MathSciNet  Google Scholar 

  10. Cánovas, J. S., Munñoz—Guillermo, M. On the dynamics of the q-deformed logistic map. Phys. Lett. A, 383: 1742–1754 (2019)

    Article  MathSciNet  Google Scholar 

  11. de Melo, W., van Strien, S. One dimensional dynamics. Springer-Verlag, Berlin, Heidelberg, 1993

    Book  Google Scholar 

  12. Graczyk, J., Sands, D., Światek, G. Metric attractors for smooth unimodal maps. Ann. Math., 159: 725–740 (2004)

    Article  MathSciNet  Google Scholar 

  13. Guckenheimer, J. Sensitive dependence to initial conditions for one dimensional maps. Comm. Math. Phys., 70: 133–160 (1979)

    Article  MathSciNet  Google Scholar 

  14. Kolyada, S., Snoha, L’. Topological entropy of nonautononous dynamical systems. Random Comp. Dyn., 4: 205–233 (1996)

    MATH  Google Scholar 

  15. Li, T.Y., Yorke, J.A. Period three implies chaos. Amer. Math. Monthly, 82: 985–992 (1975)

    Article  MathSciNet  Google Scholar 

  16. Martens, M., de Melo, W. van Strien, S. Julia-Fatou-Sullivan theory for real one-dimensional dynamics. Acta Math., 168: 273–318 (1992)

    Article  MathSciNet  Google Scholar 

  17. Milnor, J. On the concept of attractor. Comm. Math. Phys., 99: 177–195 (1985)

    Article  MathSciNet  Google Scholar 

  18. Misiurewicz, M. Szlenk, W. Entropy of piecewise monotone mappings. Studia Math., 67: 45–63 (1980)

    Article  MathSciNet  Google Scholar 

  19. Moysis, L., Volos, C., Jafari, S., Muñoz-Pacheco, J. M., Kengne, J. Rajagopal, K., Stouboulos, I. Modification of the logistic map using fuzzy numbers with application to pseudorandom number generation and image encryption. Entropy, 22: 474 (2020)

    Article  MathSciNet  Google Scholar 

  20. Singer, D. Stable orbits and bifurcations of maps on the interval. SIAM J. Appl. Math., 35: 260–267 (1978)

    Article  MathSciNet  Google Scholar 

  21. Smítal, J. Chaotic functions with zero topological entropy. Trans. Amer. Math. Soc., 297: 269–282 (1986)

    Article  MathSciNet  Google Scholar 

  22. Zadeh, L. Fuzzy Sets and Systems. Proc. Symp. on Systems Theory, Polytechnic Institute Press, Brooklyn, New York, 1965

    Google Scholar 

Download references

Funding

This paper is supported by the grant MTM2017-84079-P funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe”, by the European Union.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. S. Cánovas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cánovas, J.S. A Note on the Dynamics of the Logistic Family Modified by Fuzzy Numbers. Acta Math. Appl. Sin. Engl. Ser. 38, 741–752 (2022). https://doi.org/10.1007/s10255-022-1085-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10255-022-1085-5

Keywords

2000 MR Subject Classification

Navigation