Skip to main content

Advertisement

Log in

Behçet’s syndrome: recent advances to aid diagnosis

  • Review
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Behçet’s syndrome is a recurring inflammatory multiorgan disorder affecting the skin, mucosa, eyes, joints, stomach, and central nervous system. Behçet’s syndrome epidemiology varies greatly among populations (0.64–420/100,000), and Behçet’s syndrome has gained increasing international acclaim in the recent 50 years due to raising awareness of the syndrome, although it is rare in most population. In addition to the unclear etiology of the syndrome, the diagnosis of Behçet’s syndrome is complicated by a vague clinical presentation, phenotypic heterogeneity and/or incomplete representation, and the lack of any specific laboratory, radiographic, or histological findings. There exists a dire need to elucidate factors that contribute to disease pathogenesis and/or are associated with clinical features of Behçet’s syndrome and the classification of different forms of the syndrome. The identification of such molecular, cellular, and/or clinical factors are crucial for timely diagnosis and efficacious management of Behçet’s syndrome. We discuss recent advances in the clinical diagnosis of Behçet’s syndrome and related contributions of genetics, epigenetics, microbiome, inflammasomes, and autoantibodies to the improved diagnosis, management, and understanding of Behçet’s syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data are available from the corresponding author upon reasonable request.

References

  1. Hatemi G, Seyahi E, Fresko I, Talarico R, Uçar D, Hamuryudan V. Behçet’s syndrome: one year in review 2022. Clin Exp Rheumatol. 2022;40(8):1461–71.

    PubMed  Google Scholar 

  2. Hellmich B, et al. 2018 Update of the EULAR recommendations for the management of large vessel vasculitis. Ann Rheum Dis. 2020;79(1):19–30.

    PubMed  Google Scholar 

  3. McHugh J. Different phenotypes identified for Behçet syndrome. Nat Rev Rheumatol. 2021;17(4):188–188.

    CAS  PubMed  Google Scholar 

  4. Soejima Y, et al. Changes in the proportion of clinical clusters contribute to the phenotypic evolution of Behçet’s disease in Japan. Arthritis Res Ther. 2021;23(1):49.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Zou J, et al. Cluster analysis of phenotypes of patients with Behçet’s syndrome: a large cohort study from a referral center in China. Arthritis Res Ther. 2021;23(1):45.

    PubMed  PubMed Central  Google Scholar 

  6. Yazici H, et al. Behçet syndrome: a contemporary view. Nat Rev Rheumatol. 2018;14(2):107–19.

    CAS  PubMed  Google Scholar 

  7. Kul Cinar O, Romano M, Guzel F, Brogan PA, Demirkaya E. Paediatric Behçet’s disease: a comprehensive review with an emphasis on monogenic mimics. J Clin Med. 2022;11(5):1278.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Ozguler Y, et al. Management of major organ involvement of Behçet’s syndrome: a systematic review for update of the EULAR recommendations. Rheumatology. 2018;57(12):2200–12.

    PubMed  Google Scholar 

  9. Mahmoudi M, et al. A comprehensive overview on the genetics of Behçet’s disease. Int Rev Immunol. 2022;41(2):84–106.

    CAS  PubMed  Google Scholar 

  10. Azizlerli G, et al. Prevalence of Behçet’s disease in Istanbul, Turkey. Int J Dermatol. 2003;42(10):803–6.

    PubMed  Google Scholar 

  11. Yurdakul S, et al. The prevalence of Behçet’s syndrome in a rural area in northern Turkey. J Rheumatol. 1988;15(5):820–2.

    CAS  PubMed  Google Scholar 

  12. Idil A, et al. The prevalence of Behcet’s disease above the age of 10 years The results of a pilot study conducted at the Park Primary Health Care Center in Ankara. Turk Ophthalmic Epidemiol. 2002;9(5):325–31.

    CAS  Google Scholar 

  13. Kirino Y, Nakajima H. Clinical and genetic aspects of Behçet’s disease in Japan. Intern Med. 2019;58(9):1199–207.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Muruganandam, M., et al. Characteristics of Behcet's disease in the American Southwest. in Seminars in Arthritis and Rheumatism. 2019. Elsevier.

  15. Tunes RS, et al. Prevalence of Behcet’s syndrome in patients with recurrent aphthous ulcerations in Brazil. Rheumatol Int. 2009;29(8):875–8.

    PubMed  Google Scholar 

  16. Fernández-Ávila DG, et al. Prevalence and demographic characteristics of Behcet disease in Colombia: data from the national health registry 2012–2016. Rheumatol Int. 2020;40(1):17–20.

    PubMed  Google Scholar 

  17. Maldini C, et al. Exploring the variability in Behçet’s disease prevalence: a meta-analytical approach. Rheumatology. 2018;57(1):185–95.

    PubMed  Google Scholar 

  18. Lin Y-H, et al. Epidemiology of Behcet’s disease in Taiwan: a population-based study. Ophthalmic Epidemiol. 2018;25(4):323–9.

    PubMed  Google Scholar 

  19. Lee Y, et al. Incidence, prevalence, and mortality of Adamantiades-Behçet’s disease in Korea: a nationwide, population-based study (2006–2015). J Eur Acad Dermatol Venereol. 2018;32(6):999–1003.

    CAS  PubMed  Google Scholar 

  20. Kanecki K, et al. Behcet disease: a rare systemic vasculitis in Poland. Polish Arch Int Med. 2017;127(10):652–6.

    Google Scholar 

  21. Mohammad A, et al. Incidence, prevalence and clinical characteristics of Behcet’s disease in southern Sweden. Rheumatology. 2013;52(2):304–10.

    PubMed  Google Scholar 

  22. Kappen J, et al. Behçet’s disease, hospital-based prevalence and manifestations in the Rotterdam area. Neth J Med. 2015;73(10):471–7.

    CAS  PubMed  Google Scholar 

  23. Silman A. Criteria for diagnosis of behcets-disease. Lancet. 1990;335(8697):1078–80.

    Google Scholar 

  24. Disease ITFTROTICFBS, et al. The International Criteria for Behçet’s Disease (ICBD): a collaborative study of 27 countries on the sensitivity and specificity of the new criteria. J Eur Acad Dermatol Venereol. 2014;28(3):338–47.

    Google Scholar 

  25. Uygunoglu U, Siva A. An uncommon disease included commonly in the differential diagnosis of neurological diseases: Neuro-Behçet’s syndrome. J Neurol Sci. 2021;426:117436.

    PubMed  Google Scholar 

  26. Yazici H, Ugurlu S, Seyahi E. Behçet syndrome: is it one condition? Clin Rev Allergy Immunol. 2012;43(3):275–80.

    CAS  PubMed  Google Scholar 

  27. Group SOUNW. Classification criteria for Behçet disease uveitis. Am J Ophthalmol. 2021;228:80–8.

    Google Scholar 

  28. Tugal-Tutkun I, Onal S, Gül A. Comment on classification criteria for Behçet Disease uveitis. Am J Ophthalmol. 2022;235:336–8.

    PubMed  Google Scholar 

  29. Alibaz-Oner F, et al. Femoral vein wall thickness measurement: A new diagnostic tool for Behçet’s disease. Rheumatol Oxford. 2021;60(1):288–96.

    Google Scholar 

  30. Karadag O, et al. Journey of Vasculitis at Hacettepe University: from the Establishment of University to the Hacettepe AAV Workshop, 2020. Acta Medica. 2021;52:4–6.

    Google Scholar 

  31. Ergun, T., Pathergy phenomenon. Frontiers in medicine, 2021: 637.

  32. Özdemir M, et al. Evaluation of application of multiple needle pricks on the pathergy reaction. Int J Dermatol. 2008;47(4):335–8.

    PubMed  Google Scholar 

  33. Dilsen N, et al. Comparative study of the skin pathergy test with blunt and sharp needles in Behcet’s disease: confirmed specificity but decreased sensitivity with sharp needles. Ann Rheum Dis. 1993;52(11):823.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Karadağ AS, et al. Comparison of clinical and histopathologic findings of pathergy test with disposable/sharp and nondisposable/blunt needles in Behcet´ s disease. Turkish J Med Sci. 2009;39(1):47–51.

    Google Scholar 

  35. Gilhar A, et al. Skin hyperreactivity. response (pathergy) in Behçet’s disease. J Am Acad Dermatol. 1989;21(3):547–52.

    CAS  PubMed  Google Scholar 

  36. Krajewska-Włodarczyk M, Owczarczyk-Saczonek A, Placek W. Changes in body composition and bone mineral density n postmenopausal women with psoriatic arthritis. Reumatol Rheumatol. 2017;55(5):215–21.

    Google Scholar 

  37. Varol A, Seifert O, Anderson CD. The skin pathergy test: innately useful? Arch Dermatol Res. 2010;302(3):155–68.

    PubMed  Google Scholar 

  38. Sasor SE, et al. Pyoderma gangrenosum demographics, treatments, and outcomes: an analysis of 2,273 cases. J Wound Care. 2018;27(Sup1):S4–8.

    PubMed  Google Scholar 

  39. von den Driesch P. Sweet’s syndrome: pathogenesis and associated conditions. J Am Acad Dermatol. 1991;25(3):577–8.

    PubMed  Google Scholar 

  40. Davatchi F, et al. Impact of the positive pathergy test on the performance of classification/diagnosis criteria for Behcet’s disease. Mod Rheumatol. 2013;23(1):125–32.

    PubMed  Google Scholar 

  41. Deniz, R., et al., Improved sensitivity of skin pathergy test with polysaccharide pneumococcal vaccine antigens in the diagnosis of Behçet disease. Rheumatology, 2022.

  42. Shenavandeh S, Sadeghi SMK, Aflaki E. Pathergy test with a 23G needle with and without self-saliva in patients with Behçet’s disease, recurrent aphthous stomatitis and control group compared to the 20G test. Reumatol Rheumatol. 2021;59(1):302–8.

    Google Scholar 

  43. de Menthon M, et al. HLA-B51/B5 and the risk of Behçet’s disease: a systematic review and meta-analysis of case-control genetic association studies. Arthritis Rheum. 2009;61(10):1287–96.

    PubMed  Google Scholar 

  44. Dalvi SR, Yildirim R, Yazici Y. Behcet’s syndrome. Drugs. 2012;72(17):2223–41.

    CAS  PubMed  Google Scholar 

  45. Takeno M. The association of Behçet’s syndrome with HLA-B51 as understood in 2021. Curr Opin Rheumatol. 2022;34(1):4–9.

    CAS  PubMed  Google Scholar 

  46. Kirino Y, et al. Genome-wide association analysis identifies new susceptibility loci for Behçet’s disease and epistasis between HLA-B*51 and ERAP1. Nat Genet. 2013;45(2):202–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Guasp P, et al. The Peptidome of Behçet’s Disease-associated HLA-B*51:01 includes two subpeptidomes differentially shaped by endoplasmic reticulum aminopeptidase 1. Arthritis Rheumatol. 2016;68(2):505–15.

    CAS  PubMed  Google Scholar 

  48. Takeuchi M, et al. A single endoplasmic reticulum aminopeptidase-1 protein allotype is a strong risk factor for Behçet’s disease in HLA-B*51 carriers. Ann Rheum Dis. 2016;75(12):2208–11.

    CAS  PubMed  Google Scholar 

  49. Guasp P, et al. The Behçet’s disease-associated variant of the aminopeptidase ERAP1 shapes a low-affinity HLA-B*51 peptidome by differential subpeptidome processing. J Biol Chem. 2017;292(23):9680–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Cavers A, et al. Behçet’s disease risk-variant HLA-B51/ERAP1-Hap10 alters human CD8 T cell immunity. Ann Rheum Dis. 2022;81(11):1603–11.

    CAS  PubMed  Google Scholar 

  51. Mizuki N, et al. Genome-wide association studies identify IL23R-IL12RB2 and IL10 as Behçet’s disease susceptibility loci. Nat Genet. 2010;42(8):703–6.

    CAS  PubMed  Google Scholar 

  52. Remmers EF, et al. Genome-wide association study identifies variants in the MHC class I, IL10, and IL23R-IL12RB2 regions associated with Behçet’s disease. Nat Genet. 2010;42(8):698–702.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Ortiz Fernández L, et al. Genetic association of a gain-of-function IFNGR1 polymorphism and the intergenic region LNCAROD/DKK1 With Behçet’s Disease. Arthritis Rheumatol. 2021;73(7):1244–52.

    PubMed  PubMed Central  Google Scholar 

  54. Manthiram K, et al. Common genetic susceptibility loci link PFAPA syndrome, Behçet’s disease, and recurrent aphthous stomatitis. Proc Natl Acad Sci U S A. 2020;117(25):14405–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Calle-Fabregat CD, Morante-Palacios O, Ballestar E. Understanding the relevance of DNA methylation changes in immune differentiation and disease. Genes. 2020;11(1):110.

    PubMed  PubMed Central  Google Scholar 

  56. Kolahi S, et al. Evaluation of DNA methylation status of toll-like receptors 2 and 4 promoters in Behcet’s disease. J Gene Med. 2020;22(10):e3234.

    CAS  PubMed  Google Scholar 

  57. Alipour S, et al. Methylation status of interleukin-6 gene promoter in patients with Behçet’s disease. Reumatol Clín. 2020;16(3):229–34.

    PubMed  Google Scholar 

  58. Abdi A, et al. Evaluation of SOCS1 methylation in patients with Behcet’s disease. Immunol Lett. 2018;203:15–20.

    CAS  PubMed  Google Scholar 

  59. Hughes T, et al. Epigenome-wide scan identifies a treatment-responsive pattern of altered DNA methylation among cytoskeletal remodeling genes in monocytes and CD4+ T cells from patients with Behçet’s disease. Arthritis Rheumatol. 2014;66(6):1648–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Qiu Y, et al. The role of sirtuin-1 in immune response and systemic lupus erythematosus. Front Immunol. 2021;12:632383.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang J, et al. The type III histone deacetylase Sirt1 is essential for maintenance of T cell tolerance in mice. J Clin Invest. 2009;119(10):3048–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Xie M, Yang Y. Decreased expression of sirt1 contributes to ocular Behçet’s disease progression via Th17 and Th22 response. Ophthalmic Res. 2021;64(4):554–60.

    CAS  PubMed  Google Scholar 

  63. O’Brien J, et al. Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol Lausanne. 2018;9:402.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Puccetti A, et al. MicroRNA expression profiling in Behçet’s disease. J Immunol Res. 2018;2018:2405150.

    PubMed  PubMed Central  Google Scholar 

  65. Woo M-Y, et al. MicroRNAs differentially expressed in Behçet disease are involved in interleukin-6 production. J Inflamm. 2016;13(1):22.

    Google Scholar 

  66. Emmi G, et al. A unique circulating miRNA profile highlights thrombo-inflammation in Behçet’s syndrome. Ann Rheum Dis. 2022;81(3):386–97.

    CAS  PubMed  Google Scholar 

  67. Ibrahim W, et al. MicroRNA-146a expression and microRNA-146a rs2910164 polymorphism in Behcet’s disease patients. Clin Rheumatol. 2019;38(2):397–402.

    CAS  PubMed  Google Scholar 

  68. Mohammed SR, et al. Expression of lncRNAs NEAT1 and lnc-DC in serum from patients with Behçet’s disease can be used as predictors of disease. Front Mol Biosci. 2021;8:797689.

    CAS  PubMed  Google Scholar 

  69. Sirisinha S. The potential impact of gut microbiota on your health: current status and future challenges. Asian Pac J Allergy Immunol. 2016;34(4):249–64.

    CAS  PubMed  Google Scholar 

  70. Coit P, et al. Sequencing of 16S rRNA reveals a distinct salivary microbiome signature in Behçet’s disease. Clin Immunol. 2016;169:28–35.

    CAS  PubMed  Google Scholar 

  71. Ye Z, et al. A metagenomic study of the gut microbiome in Behcet’s disease. Microbiome. 2018;6(1):135.

    PubMed  PubMed Central  Google Scholar 

  72. Mumcu G, Fortune F. Oral health and its aetiological role in Behçet’s Disease. Front Med Lausanne. 2021;8:613419.

    PubMed  PubMed Central  Google Scholar 

  73. Consolandi C, et al. Behçet’s syndrome patients exhibit specific microbiome signature. Autoimmun Rev. 2015;14(4):269–76.

    PubMed  Google Scholar 

  74. Kim JC, Park MJ, Park S, Lee ES. Alteration of the fecal but not salivary microbiome in patients with behcet’s disease according to disease activity shift. Microorganisms. 2021;9(7):1449.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. van der Houwen TB, et al. Behçet’s disease under microbiotic surveillance? A combined analysis of two cohorts of Behçet’s disease patients. Front Immunol. 2020;11:1192.

    PubMed  PubMed Central  Google Scholar 

  76. Emmi G, et al. Butyrate-rich diets improve redox status and fibrin lysis in Behçet’s syndrome. Circ Res. 2021;128(2):278–80.

    CAS  PubMed  Google Scholar 

  77. Navarro M, et al. Anti-endothelial cell antibodies in systemic autoimmune diseases: prevalence and clinical significance. Lupus. 1997;6(6):521–6.

    CAS  PubMed  Google Scholar 

  78. Zheng W, et al. A study of antiendothelial cell antibodies in Behcet’s disease. Zhonghua Nei Ke Za Zhi. 2005;44(12):910–3.

    CAS  PubMed  Google Scholar 

  79. Souza RC, et al. Anti-endothelial cell antibodies and central nervous system involvement in Behçet’s disease. Clinics. 2007;62:685–90.

    PubMed  Google Scholar 

  80. Lee KH, et al. Human α-enolase from endothelial cells as a target antigen of anti–endothelial cell antibody in Behçet’s disease. Arthritis Rheum Off J Am College Rheumatol. 2003;48(7):2025–35.

    CAS  Google Scholar 

  81. Kang SE, Lee SJ, Lee JY, Yoo HJ, Park JK, Lee EY, Lee EB, Song YW. Serum levels of IgG antibodies against alpha-enolase are increased in patients with Behçet’s disease and are associated with the severity of oral ulcer, erythrocyte sedimentation rates, and C-reactive protein. Clin Exp Rheumatol. 2017;35(6):67–74.

    PubMed  Google Scholar 

  82. Direskeneli H, et al. Anti-endothelial cell antibodies, endothelial proliferation and von Willebrand factor antigen in Behçet’s disease. Clin Rheumatol. 1995;14(1):55–61.

    CAS  PubMed  Google Scholar 

  83. Hussain M, et al. Moesin expression is correlated with its involvement in patients with Behcet’s disease. Arch Med Sci. 2020;16(4):924–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Delunardo F, et al. Identification and characterization of the carboxy-terminal region of Sip-1, a novel autoantigen in Behçet’s disease. Arthritis Res Ther. 2006;8(3):R71.

    PubMed  PubMed Central  Google Scholar 

  85. Kang SE, et al. Serum levels of IgG antibodies against alpha-enolase are increased in patients with Behcet’s disease and are associated with the severity of oral ulcer, erythrocyte sedimentation rates, and C-reactive protein. Clin Exp Rheumatol. 2017;35(6):67–74.

    PubMed  Google Scholar 

  86. Cho SB, et al. Identification of HnRNP-A2/B1 as a target antigen of anti-endothelial cell IgA antibody in Behçet’s disease. J Invest Dermatol. 2012;132(3 Pt 1):601–8.

    CAS  PubMed  Google Scholar 

  87. Hu CJ, et al. Identification of novel biomarkers for behcet disease diagnosis using human proteome microarray approach. Mol Cell Proteomics. 2017;16(2):147–56.

    CAS  PubMed  Google Scholar 

  88. Xun Y, et al. Identification of prohibitin as an antigen in Behcet’s disease. Biochem Biophys Res Commun. 2014;451(3):389–93.

    CAS  PubMed  Google Scholar 

  89. Cheng Y, et al. Circulating immune complexome analysis identified anti-tubulin-α-1c as an inflammation associated autoantibody with promising diagnostic value for Behcet’s Disease. PLoS ONE. 2018;13(6):e0199047.

    PubMed  PubMed Central  Google Scholar 

  90. Rojas M, et al. Molecular mimicry and autoimmunity. J Autoimmun. 2018;95:100–23.

    CAS  PubMed  Google Scholar 

  91. Lule S, et al. Behçet Disease serum is immunoreactive to neurofilament medium which share common epitopes to bacterial HSP-65, a putative trigger. J Autoimmun. 2017;84:87–96.

    CAS  PubMed  Google Scholar 

  92. Malcova H, et al. Interleukin-1 blockade in polygenic autoinflammatory disorders: where are we now? Front Pharmacol. 2020;11:619273.

    CAS  PubMed  Google Scholar 

  93. Emmi G, et al. Efficacy and safety profile of anti-interleukin-1 treatment in Behçet’s disease: a multicenter retrospective study. Clin Rheumatol. 2016;35(5):1281–6.

    PubMed  Google Scholar 

  94. Kim EH, et al. Increased expression of the NLRP3 inflammasome components in patients with Behçet’s disease. J Inflamm. 2015;12(1):41.

    Google Scholar 

  95. Hamzaoui K, et al. Elevated levels of IL-32 in cerebrospinal fluid of neuro-Behcet disease: Correlation with NLRP3 inflammasome. J Neuroimmunol. 2022;365:577820.

    CAS  PubMed  Google Scholar 

  96. Faghfouri AH, et al. Regulation of NLRP3 inflammasome by zinc supplementation in Behçet’s disease patients: A double-blind, randomized placebo-controlled clinical trial. Int Immunopharmacol. 2022;109:108825.

    CAS  PubMed  Google Scholar 

  97. Park YH, et al. Pyrin inflammasome activation and RhoA signaling in the autoinflammatory diseases FMF and HIDS. Nat Immunol. 2016;17(8):914–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Touitou I, et al. MEFV mutations in Behçet’s disease. Hum Mutat. 2000;16(3):271–2.

    CAS  PubMed  Google Scholar 

  99. Burillo-Sanz S, et al. Mutational profile of rare variants in inflammasome-related genes in Behçet disease: A next generation sequencing approach. Sci Rep. 2017;7(1):8453.

    PubMed  PubMed Central  Google Scholar 

  100. Aydıntug A, et al. Antibodies to endothelial cells in patients with Behçet’s disease. Clin Immunol Immunopathol. 1993;67(2):157–62.

    PubMed  Google Scholar 

Download references

Funding

This study was funded by Hacettepe University Scientific Research Projects Coordination Unit [grant number TSA-2019–17549]. THA is supported by funds from a Global Affairs Canada Go-Global Study in Canada Scholarship. KLB is supported by a BC Children’s Hospital Salary Award and a Michael Smith Foundation for Health Research Scholar Award.

Author information

Authors and Affiliations

Authors

Contributions

T.H.A and M.E. wrote the main manuscript text, and A.I.C., K.L.B., O.K., and B.B.P. reviewed the article.

Corresponding author

Correspondence to Banu Balci-Peynircioglu.

Ethics declarations

Conflict of interests

The authors have no competing interests, or other interests that might be perceived to influence the results and/or discussion reported in this paper.

Ethics approval and consent to participate

This article does not contain any studies with human or animal subjects performed by any of the authors.

Consent for publication

All authors concur with the publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbaba, T.H., Ekici, M., Çolpak, A.İ. et al. Behçet’s syndrome: recent advances to aid diagnosis. Clin Exp Med 23, 4079–4090 (2023). https://doi.org/10.1007/s10238-023-01226-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-023-01226-7

Keywords

Navigation