Skip to main content

Advertisement

Log in

COX5A as a potential biomarker for disease activity and organ damage in lupus

  • Research
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Systemic Lupus Erythematosus (SLE) is a complex autoimmune disease with limited therapeutic targets or clinical outcome predictors. This study aimed to gain more insights into the underlying immunological pathways and prognostic biomarkers of SLE. Integrated analyses of RNA-seq data from 64 SLE and 62 healthy controls, examining 27 immune cell types to explore the key pathways and driver genes in SLE pathogenesis. Single-cell RNA sequencing data from the skin and kidney were used to determine the association of COX5A expression with organ damage. The associations of COX5A with SLE phenotypes were further evaluated in two independent cohorts, and receiver operating characteristic (ROC) curves were constructed to assess the value of COX5A as a biomarker for disease activity and organ damage in SLE. We found that oxidative phosphorylation (OXPHOS) is the most significantly altered metabolic pathway in SLE, especially in effector T cells. Notably, we identified an OXPHOS-related enzyme, COX5A, whose expression was significantly higher in effector T cells than in naïve T cells and showed associations with disease activity, organ damage, and steroid treatment of SLE. Furthermore, ROC curves showed that COX5A is a robust biomarker for disease activity, kidney involvement, and new-onset skin lesions, with the area under the curve (AUC) values of 0.880, 0.801, and 0.805, respectively. Our results identified the OXPHOS signature as a prominent feature in SLE T cells, and COX5A as a potential candidate biomarker for disease activity and organ damage in SLE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in SI. 1.

Abbreviations

AUC:

Area under the curve

DEGs:

Differentially expressed genes

GO:

Gene Ontology

GSEA:

Gene Set Enrichment Analysis

GSVA:

Gene Set Variation Analysis

ISG:

Interferon-stimulated genes

KEGG:

Kyoto Encyclopedia of Genes and Genomes

LFSR:

Local false sign rate

logCPM:

Log-transformed count per million

MsigDb:

Molecular Signatures Database

OXPHOS:

Oxidative phosphorylation

PCA:

Principal components analysis

PPI:

Protein–protein interaction

qRT‒PCR:

Quantitative real-time PCR

ROC:

Receiver operating characteristic

SLE:

Systemic Lupus Erythematosus

UMAP:

Uniform manifold approximation and projection

References

  1. Carter EE, Barr SG, Clarke AE. The global burden of SLE: prevalence, health disparities and socioeconomic impact. Nat Rev Rheumatol. 2016;12(10):605–20.

    Article  PubMed  Google Scholar 

  2. Dunlap GS, Billi AC, Xing X, et al. Single-cell transcriptomics reveals distinct effector profiles of infiltrating T cells in lupus skin and kidney. JCI Insight. 2022. https://doi.org/10.1172/jci.insight.156341.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Arazi A, Rao DA, Berthier CC, et al. The immune cell landscape in kidneys of patients with lupus nephritis. Nat Immunol. 2019;20(7):902–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mistry P, Nakabo S, O’Neil L, et al. Transcriptomic, epigenetic, and functional analyses implicate neutrophil diversity in the pathogenesis of systemic lupus erythematosus. Proc Natl Acad Sci U S A. 2019;116(50):25222–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bashant KR, Aponte AM, Randazzo D, et al. Proteomic, biomechanical and functional analyses define neutrophil heterogeneity in systemic lupus erythematosus. Ann Rheum Dis. 2021;80(2):209–18.

    Article  CAS  PubMed  Google Scholar 

  6. Baechler EC, Batliwalla FM, Karypis G, et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci U S A. 2003;100(5):2610–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Crow MK. Type I interferon in the pathogenesis of lupus. J Immunol. 2014;192(12):5459–68.

    Article  CAS  PubMed  Google Scholar 

  8. Soni C, Perez OA, Voss WN, et al. Plasmacytoid dendritic cells and type I interferon promote extrafollicular B cell responses to extracellular self-DNA. Immunity. 2020;52(6):1022-38 e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Landolt-Marticorena C, Bonventi G, Lubovich A, et al. Lack of association between the interferon-alpha signature and longitudinal changes in disease activity in systemic lupus erythematosus. Ann Rheum Dis. 2009;68(9):1440–6.

    Article  CAS  PubMed  Google Scholar 

  10. Panwar B, Schmiedel BJ, Liang S, et al. Multi-cell type gene coexpression network analysis reveals coordinated interferon response and cross-cell type correlations in systemic lupus erythematosus. Genome Res. 2021;31(4):659–76.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Morand EF, Furie R, Tanaka Y, et al. Trial of anifrolumab in active systemic lupus erythematosus. N Engl J Med. 2020;382(3):211–21.

    Article  CAS  PubMed  Google Scholar 

  12. Chapman NM, Chi H. Metabolic adaptation of lymphocytes in immunity and disease. Immunity. 2022;55(1):14–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Buck MD, Sowell RT, Kaech SM, Pearce EL. Metabolic Instruction of Immunity. Cell. 2017;169(4):570–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ghosh-Choudhary S, Liu J, Finkel T. Metabolic regulation of cell fate and function. Trends Cell Biol. 2020;30(3):201–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chi H. Regulation and function of mTOR signalling in T cell fate decisions. Nat Rev Immunol. 2012;12(5):325–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. D’Souza AD, Parikh N, Kaech SM, Shadel GS. Convergence of multiple signaling pathways is required to coordinately up-regulate mtDNA and mitochondrial biogenesis during T cell activation. Mitochondrion. 2007;7(6):374–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li F, Liu H, Zhang D, Ma Y, Zhu B. Metabolic plasticity and regulation of T cell exhaustion. Immunology. 2022;167(4):482–94.

    Article  CAS  PubMed  Google Scholar 

  18. Sugiura A, Andrejeva G, Voss K, et al. MTHFD2 is a metabolic checkpoint controlling effector and regulatory T cell fate and function. Immunity. 2022;55(1):65-81.e9.

    Article  CAS  PubMed  Google Scholar 

  19. Wagner A, Wang C, Fessler J, et al. Metabolic modeling of single Th17 cells reveals regulators of autoimmunity. Cell. 2021;184(16):4168-85.e21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Morel L. Immunometabolism in systemic lupus erythematosus. Nat Rev Rheumatol. 2017;13(5):280–90.

    Article  CAS  PubMed  Google Scholar 

  21. Sharabi A, Tsokos GC. T cell metabolism: new insights in systemic lupus erythematosus pathogenesis and therapy. Nat Rev Rheumatol. 2020;16(2):100–12.

    Article  CAS  PubMed  Google Scholar 

  22. Takeshima Y, Iwasaki Y, Nakano M, et al. Immune cell multiomics analysis reveals contribution of oxidative phosphorylation to B-cell functions and organ damage of lupus. Ann Rheum Dis. 2022;81(6):845–53.

    Article  CAS  PubMed  Google Scholar 

  23. Shim JS, Kim EJ, Lee LE, et al. The oxidative phosphorylation inhibitor IM156 suppresses B-cell activation by regulating mitochondrial membrane potential and contributes to the mitigation of systemic lupus erythematosus. Kidney Int. 2023;103(2):343–56.

    Article  CAS  PubMed  Google Scholar 

  24. Johnson MO, Wolf MM, Madden MZ, et al. Distinct regulation of Th17 and Th1 cell differentiation by glutaminase-dependent metabolism. Cell. 2018;175(7):1780-95.e19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ota M, Nagafuchi Y, Hatano H, et al. Dynamic landscape of immune cell-specific gene regulation in immune-mediated diseases. Cell. 2021;184(11):3006-21 e17.

    Article  CAS  PubMed  Google Scholar 

  26. Zheng M, Hu Z, Mei X, et al. Single-cell sequencing shows cellular heterogeneity of cutaneous lesions in lupus erythematosus. Nat Commun. 2022;13(1):7489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol. 2018;36(5):411–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40.

    Article  CAS  PubMed  Google Scholar 

  29. Korsunsky I, Millard N, Fan J, et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat Methods. 2019;16(12):1289–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7): e47.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Urbut SM, Wang G, Carbonetto P, Stephens M. Flexible statistical methods for estimating and testing effects in genomic studies with multiple conditions. Nat Genet. 2019;51(1):187–95.

    Article  CAS  PubMed  Google Scholar 

  32. Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinform. 2013;14:7.

    Article  Google Scholar 

  33. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16(5):284–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol. 2014. https://doi.org/10.1186/1752-0509-8-S4-S11.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kirou KA, Lee C, George S, Louca K, Peterson MG, Crow MK. Activation of the interferon-alpha pathway identifies a subgroup of systemic lupus erythematosus patients with distinct serologic features and active disease. Arthritis Rheum. 2005;52(5):1491–503.

    Article  CAS  PubMed  Google Scholar 

  37. Luke A. J., O'Neill Rigel J., Kishton Jeff, Rathmell (2016) A guide to immunometabolism for immunologists Nature Reviews Immunology 16(9):553–565. https://doi.org/10.1038/nri.2016.70

  38. (2017) Cytochrome c Oxidase Activity Is a Metabolic Checkpoint that Regulates Cell Fate Decisions During T Cell Activation and Differentiation Cell Metabolism 25(6):1254–1268.e7. https://doi.org/10.1016/j.cmet.2017.05.007

  39. (2020) Calcium regulation of T cell metabolism Current Opinion in Physiology 17207–223. https://doi.org/10.1016/j.cophys.2020.07.016

  40. (2022) Abnormalities of T cells in systemic lupus erythematosus: new insights in pathogenesis and therapeutic strategies Journal of Autoimmunity 132102870. https://doi.org/10.1016/j.jaut.2022.102870

  41. (2022) (2022) (2021) An enhanced mitochondrial function through glutamine metabolism in plasmablast differentiation in systemic lupus erythematosus Abstract Rheumatology 61(7):3049–3059. https://doi.org/10.1093/rheumatology/keab824

  42. Buang N, Tapeng L, Gray V, et al. Type I interferons affect the metabolic fitness of CD8(+) T cells from patients with systemic lupus erythematosus. Nat Commun. 2021;12(1):1980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tarasenko TN, Pacheco SE, Koenig MK, et al. Cytochrome c oxidase activity is a metabolic checkpoint that regulates cell fate decisions during T cell activation and differentiation. Cell Metab. 2017;25(6):1254-68.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This work was supported by the Joint Fund of Medical Sciences of the University of Science and Technology [grant number: YD9110002022].

Author information

Authors and Affiliations

Authors

Contributions

MC, YQ, JT, and ZC contributed to the conception of the work. MC and YQ analyzed the data. MC wrote the first draft and YQ, JT, and ZC made critical revisions to the manuscript. AW and HJn participated in the acquisition of data and laboratory studies and reviewed the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jun Tang or Zhu Chen.

Ethics declarations

Competing Interest

The authors have no relevant financial or non-financial interests to disclose.

Consent to participate

Written informed consent was obtained from all individual participants included in the study.

Ethics approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the institutional ethics committee of the First Affiliated Hospital of University of Science and Technology of China.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, M., Qin, Y., Wan, A. et al. COX5A as a potential biomarker for disease activity and organ damage in lupus. Clin Exp Med 23, 4745–4756 (2023). https://doi.org/10.1007/s10238-023-01215-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-023-01215-w

Keywords

Navigation