Skip to main content

Advertisement

Log in

Expression patterns of the activator protein-1 (AP-1) family members in lymphoid neoplasms

  • Review Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

The activator protein-1 (AP-1) is a dimeric transcription factor composed of proteins belonging to the Jun (c-Jun, JunB and JunD), Fos (c-Fos, FosB, Fra1 and Fra2) and activating transcription factor protein families. AP-1 is involved in various cellular events including differentiation, proliferation, survival and apoptosis. Deregulated expression of AP-1 transcription factors is implicated in the pathogenesis of various lymphomas such as classical Hodgkin lymphomas, anaplastic large cell lymphomas, diffuse large B cell lymphomas and adult T cell leukemia/lymphoma. The main purpose of this review is the analysis of the expression patterns of AP-1 transcription factors in order to gain insight into the histophysiology of lymphoid tissues and the pathology of lymphoid malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Campo E, Swerdlow SH, Harris NL, Pileri S, Stein H, Jaffe ES. The 2008 WHO classification of lymphoid neoplasms and beyond: evolving concepts and practical applications. Blood. 2011;117:5019–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nogai H, Dörken B, Lenz G. Pathogenesis of non-Hodgkin’s lymphoma. J Clin Oncol. 2011;29:1803–11.

    Article  CAS  PubMed  Google Scholar 

  3. Küppers R, Engert A, Hansmann ML. Hodgkin lymphoma. J Clin Invest. 2012;122:3439–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Swerdlow SH, Campo E, Pileri SA, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127:2375–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Willemze R, Jaffe ES, Burg G, et al. WHO-EORTC classification for cutaneous lymphomas. Blood. 2005;105:3768–85.

    Article  CAS  PubMed  Google Scholar 

  6. Spina V, Martuscelli L, Rossi D. Molecular deregulation of signaling in lymphoid tumors. Eur J Haematol. 2015;. doi:10.1111/ejh.12567.

    PubMed  Google Scholar 

  7. Platanias LC. Map kinase signaling pathways and hematologic malignancies. Blood. 2003;101:4667–79.

    Article  CAS  PubMed  Google Scholar 

  8. Ferreri AJ, Govi S, Pileri SA, Savage KJ. Anaplastic large cell lymphoma, ALK-positive. Crit Rev Oncol Hematol. 2012;83:293–302.

    Article  PubMed  Google Scholar 

  9. Ferreri AJ, Govi S, Pileri SA, Savage KJ. Anaplastic large cell lymphoma, ALK-negative. Crit Rev Oncol Hematol. 2013;85:206–15.

    Article  PubMed  Google Scholar 

  10. Yogev O, Goldberg R, Anzi S, Yogev O, Shaulian E. Jun proteins are starvation-regulated inhibitors of autophagy. Cancer Res. 2010;70:2318–27.

    Article  CAS  PubMed  Google Scholar 

  11. Meixner A, Karreth F, Kenner L, Wagner EF. JunD regulates lymphocyte proliferation and T helper cell cytokine expression. EMBO J. 2004;23:1325–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Piechaczyk M, Farràs R. Regulation and function of JunB in cell proliferation. Biochem Soc Trans. 2008;36:864–7.

    Article  CAS  PubMed  Google Scholar 

  13. Hess J, Angel P, Schorpp-Kistner M. AP-1 subunits: quarrel and harmony among siblings. J Cell Sci. 2004;117:5965–73.

    Article  CAS  PubMed  Google Scholar 

  14. Shaulian E. AP-1: the Jun proteins: oncogenes or tumor suppressors in disguise? Cell Signal. 2010;22:894–9.

    Article  CAS  PubMed  Google Scholar 

  15. Hernandez JM, Floyd DH, Weilbaecher KN, Green PL, Boris-Lawrie K. Multiple facets of JunD gene expression are atypical among AP-1 family members. Oncogene. 2008;27:4757–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mathas S, Kreher S, Meaburn KJ, et al. Gene deregulation and spatial genome reorganization near breakpoints prior to formation of translocations in anaplastic large cell lymphoma. Proc Natl Acad Sci USA. 2009;106:5831–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mao X, Lillington D, Child F, Russell-Jones R, Young B, Whittaker S. Comparative genomic hybridization analysis of primary cutaneous B-cell lymphomas: identification of common genomic alterations in disease pathogenesis. Genes Chromosomes Cancer. 2002;35:144–55.

    Article  CAS  PubMed  Google Scholar 

  18. Mao X, Orchard G, Lillington DM, Russell-Jones R, Young BD, Whittaker SJ. Amplification and overexpression of JUNB is associated with primary cutaneous T-cell lymphomas. Blood. 2003;101:1513–9.

    Article  CAS  PubMed  Google Scholar 

  19. Mao X, Orchard G, Lillington DM, et al. BCL2 and JUNB abnormalities in primary cutaneous lymphomas. Br J Dermatol. 2004;151:546–56.

    Article  CAS  PubMed  Google Scholar 

  20. Mao X, Orchard G, Russell-Jones R, Whittaker S. Abnormal activator protein 1 transcription factor expression in CD30-positive cutaneous large-cell lymphomas. Br J Dermatol. 2007;157:914–21.

    Article  CAS  PubMed  Google Scholar 

  21. Mao X, Orchard G, Mitchell TJ, et al. A genomic and expression study of AP-1 in primary cutaneous T-cell lymphoma: evidence for dysregulated expression of JUNB and JUND in MF and SS. J Cutan Pathol. 2008;35:899–910.

    Article  PubMed  Google Scholar 

  22. Mao X, Orchard G. Abnormal AP-1 protein expression in primary cutaneous B-cell lymphomas. Br J Dermatol. 2008;159:145–51.

    Article  CAS  PubMed  Google Scholar 

  23. Rodig SJ, Ouyang J, Juszczynski P, et al. AP1-dependent galectin-1 expression delineates classical Hodgkin and anaplastic large cell lymphomas from other lymphoid malignancies with shared molecular features. Clin Cancer Res. 2008;14:3338–44.

    Article  CAS  PubMed  Google Scholar 

  24. Szremska AP, Kenner L, Weisz E. JunB inhibits proliferation and transformation in B-lymphoid cells. Blood. 2003;102:4159–65.

    Article  CAS  PubMed  Google Scholar 

  25. Mathas S, Hinz M, Anagnostopoulos I, et al. Aberrantly expressed c-Jun and JunB are a hallmark of Hodgkin lymphoma cells, stimulate proliferation and synergize with NF-kappa B. EMBO J. 2002;21:4104–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rassidakis GZ, Thomaides A, Atwell C, et al. JunB expression is a common feature of CD30+ lymphomas and lymphomatoid papulosis. Mod Pathol. 2005;18:1365–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Drakos E, Leventaki V, Schlette EJ, et al. c-Jun expression and activation are restricted to CD30+ lymphoproliferative disorders. Am J Surg Pathol. 2007;31:447–53.

    Article  PubMed  Google Scholar 

  28. Trøen G, Nygaard V, Jenssen TK, et al. Constitutive expression of the AP-1 transcription factors c-jun, junD, junB, and c-fos and the marginal zone B-cell transcription factor Notch2 in splenic marginal zone lymphoma. J Mol Diagn. 2004;6:297–307.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Juszczynski P, Ouyang J, Monti S, et al. The AP1-dependent secretion of galectin-1 by Reed Sternberg cells fosters immune privilege in classical Hodgkin lymphoma. Proc Natl Acad Sci USA. 2007;104:13134–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Leventaki V, Drakos E, Karanikou M, et al. c-JUN N-terminal kinase (JNK) is activated and contributes to tumor cell proliferation in classical Hodgkin lymphoma. Hum Pathol. 2014;45:565–72.

    Article  CAS  PubMed  Google Scholar 

  31. Leventaki V, Drakos E, Medeiros LJ, et al. NPM-ALK oncogenic kinase promotes cell-cycle progression through activation of JNK/cJun signaling in anaplastic large-cell lymphoma. Blood. 2007;110:1621–30.

    Article  CAS  PubMed  Google Scholar 

  32. Hsu FY, Johnston PB, Burke KA, Zhao Y. The expression of CD30 in anaplastic large cell lymphoma is regulated by nucleophosmin anaplastic lymphoma kinase mediated JunB level in a cell type-specific manner. Cancer Res. 2006;66:9002–8.

    Article  CAS  PubMed  Google Scholar 

  33. Staber PB, Vesely P, Haq N, et al. The oncoprotein NPM-ALK of anaplastic large-cell lymphoma induces JUNB transcription via ERK1/2 and JunB translation via mTOR signaling. Blood. 2007;110:3374–83.

    Article  CAS  PubMed  Google Scholar 

  34. Atsaves V, Lekakis L, Drakos E, et al. The oncogenic JUNB/CD30 axis contributes to cell cycle deregulation in ALK+ anaplastic large cell lymphoma. Br J Haematol. 2014;167:514–23.

    Article  CAS  PubMed  Google Scholar 

  35. Watanabe M, Ogawa Y, Ito K, et al. AP-1 mediated relief of repressive activity of the CD30 promoter microsatellite in Hodgkin and Reed-Sternberg cells. Am J Pathol. 2003;163:633–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Watanabe M, Sasaki M, Itoh K, et al. JunB induced by constitutive CD30 extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase signaling activates the CD30 promoter in anaplastic large cell lymphoma and Reed-Sternberg cells of Hodgkin lymphoma. Cancer Res. 2005;65:7628–34.

    Article  CAS  PubMed  Google Scholar 

  37. Watanabe M, Itoh K, Togano T, et al. Ets-1 activates overexpression of JunB and CD30 in Hodgkin’s lymphoma and anaplastic large-cell lymphoma. Am J Pathol. 2012;180:831–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Watanabe M, Ogawa Y, Itoh K, et al. Hypomethylation of CD30 CpG islands with aberrant JunB expression drives CD30 induction in Hodgkin lymphoma and anaplastic large cell lymphoma. Lab Invest. 2008;88:48–57.

    Article  CAS  PubMed  Google Scholar 

  39. Janz M, Hummel M, Truss M, et al. Hodgkin lymphoma is characterized by high constitutive expression of activating transcription factor 3 (ATF3), which promotes viability of Hodgkin/Reed-Sternberg cells. Blood. 2006;107:2536–9.

    Article  CAS  PubMed  Google Scholar 

  40. Nakayama T, Hieshima K, Arao T, et al. Aberrant expression of Fra-2 promotes CCR4 expression and cell proliferation in adult T-cell leukemia. Oncogene. 2008;27:3221–32.

    Article  CAS  PubMed  Google Scholar 

  41. Mori N, Fujii M, Iwai K, et al. Constitutive activation of transcription factor AP-1 in primary adult T-cell leukemia cells. Blood. 2000;95:3915–21.

    CAS  PubMed  Google Scholar 

  42. Higuchi T, Nakayama T, Arao T, Nishio K, Yoshie O. SOX4 is a direct target gene of FRA-2 and induces expression of HDAC8 in adult T-cell leukemia/lymphoma. Blood. 2013;121:3640–9.

    Article  CAS  PubMed  Google Scholar 

  43. Nakayama T, Higuchi T, Oiso N, Kawada A, Yoshie O. Expression and function of FRA2/JUND in cutaneous T-cell lymphomas. Anticancer Res. 2012;32:1367–73.

    CAS  PubMed  Google Scholar 

  44. Pearson JD, Lee JK, Bacani JT, Lai R, Ingham RJ. NPM-ALK and the JunB transcription factor regulate the expression of cytotoxic molecules in ALK-positive, anaplastic large cell lymphoma. Int J Clin Exp Pathol. 2011;4:124–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang Q, Yang Z, Jia Z, et al. ISL-1 is overexpressed in non-Hodgkin lymphoma and promotes lymphoma cell proliferation by forming a p-STAT3/p-c-Jun/ISL-1 complex. Mol Cancer. 2014;. doi:10.1186/1476-4598-13-181.

    Google Scholar 

  46. Pearson JD, Mohammed Z, Bacani JT, Lai R, Ingham RJ. The heat shock protein-90 co-chaperone, Cyclophilin 40, promotes ALK-positive, anaplastic large cell lymphoma viability and its expression is regulated by the NPM-ALK oncoprotein. BMC Cancer. 2012;. doi:10.1186/1471-2407-12-229.

    Google Scholar 

  47. Fernández M, Manso R, Bernaldo de Quirós F, et al. Involvement of Cot activity in the proliferation of ALCL lymphoma cells. Biochem Biophys Res Commun. 2011;12:655–60.

    Article  CAS  Google Scholar 

  48. Schmid CA, Robinson MD, Scheifinger NA, et al. DUSP4 deficiency caused by promoter hypermethylation drives JNK signaling and tumor cell survival in diffuse large B cell lymphoma. J Exp Med. 2015;212:775–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bisig B, de Reyniès A, Bonnet C, et al. CD30-positive peripheral T-cell lymphomas share molecular and phenotypic features. Haematologica. 2013;98:1250–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Atsaves V, Zhang R, Ruder D, et al. Constitutive control of AKT1 gene expression by JUNB/CJUN in ALK+ anaplastic large-cell lymphoma: a novel crosstalk mechanism. Leukemia. 2015;. doi:10.1038/leu.2015.127.

    PubMed  PubMed Central  Google Scholar 

  51. Blonska M, Zhu Y, Chuang HH, et al. Jun-regulated genes promote interaction of diffuse large B-cell lymphoma with the microenvironment. Blood. 2015;125:981–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Papoudou-Bai A, Goussia A, Batistatou A, Stefanou D, Malamou-Mitsi V, Kanavaros P. The expression levels of JunB, JunD and p–c-Jun are positively correlated with tumor cell proliferation in Diffuse Large B-Cell Lymphomas. Leuk Lymphoma. 2015;12:1–8.

    Google Scholar 

  53. Papoudou-Bai A, Barbouti A, Galani V, Stefanaki K, Kanavaros P. Immunohistological analysis of the Jun family and the signal transducers and activators of transcription (STAT) in thymus. Anat Res Int. 2015;. doi:10.1155/2015/541582.

    PubMed  PubMed Central  Google Scholar 

  54. Kanavaros P, Stefanaki K, Rontogianni D, et al. Immunohistochemical expression of p53, p21/waf1, Rb, p16, cyclin D1, p27, Ki67, cyclin A, cyclin B1, bcl2, bax and bak proteins and apoptotic index in normal thymus. Histol Histopathol. 2001;16:1005–12.

    CAS  PubMed  Google Scholar 

  55. Bai M, Doukas M, Papoudou-Bai A, et al. Immunohistological analysis of cell cycle and apoptosis regulators in thymus. Ann Anat. 2013;195:159–65.

    Article  CAS  PubMed  Google Scholar 

  56. Papoudou-Bai A, Barbouti A, Galani V, Stefanaki K, Rontogianni D, Kanavaros P. Expression of cell cycle and apoptosis regulators in thymus and thymic epithelial tumors. Clin Exp Med. 2015;. doi:10.1007/s10238-015-0344-7.

    PubMed  Google Scholar 

  57. Bohers E, Mareschal S, Bertrand P, et al. Activating somatic mutations in diffuse large B-cell lymphomas: lessons from next generation sequencing and key elements in the precision medicine era. Leuk Lymphoma. 2015;56:1213–22.

    Article  CAS  PubMed  Google Scholar 

  58. Martelli M, Ferreri AJ, Agostinelli C, Di Rocco A, Pfreundschuh M, Pileri SA. Diffuse large B-cell lymphoma. Crit Rev Oncol Hematol. 2013;87:146–71.

    Article  PubMed  Google Scholar 

  59. Carbone A, Gloghini A, Kwong YL, Younes A. Diffuse large B cell lymphoma: using pathologic and molecular biomarkers to define subgroups for novel therapy. Ann Hematol. 2014;93:1263–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hans CP, Weisenburger DD, Greiner TC, et al. Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood. 2004;103:275–82.

    Article  CAS  PubMed  Google Scholar 

  61. Bedekovics T, Hussain S, Feldman AL, Galardy PJ. UCH-L1 is induced in germinal center B-cells and identifies patients with aggressive germinal center diffuse large B-cell lymphoma. Blood 2016;127:1564–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bai M, Skyrlas A, Agnantis NJ, et al. Diffuse large B-cell lymphomas with germinal center B-cell-like differentiation immunophenotypic profile are associated with high apoptotic index, high expression of the pro-apoptotic proteins bax, bak and bid and low expression of the anti-apoptotic protein bcl-xl. Mod Pathol. 2004;17:847–56.

    Article  CAS  PubMed  Google Scholar 

  63. Juilland M, Gonzalez M, Erdmann T, et al. CARMA1- and MyD88-dependent activation of Jun/ATF-type AP-1 complexes is a hallmark of ABC diffuse large B-cell lymphomas. Blood 2016;127:1780–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hu S, Xu-Monette ZY, Balasubramanyam A, et al. CD30 expression defines a novel subgroup of diffuse large B-cell lymphoma with favorable prognosis and distinct gene expression signature: a report from the International DLBCL Rituximab-CHOP Consortium Program Study. Blood. 2013;121:2715–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Monti S, Chapuy B, Takeyama K, et al. Integrative analysis reveals an outcome-associated and targetable pattern of p53 and cell cycle deregulation in diffuse large B cell lymphoma. Cancer Cell. 2012;22:359–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Marinaccio C, Ingravallo G, Gaudio F, et al. T cells, mast cells and microvascular density in diffuse large B cell lymphoma. Clin Exp Med. 2015;. doi:10.1007/s10238-015-0354-5.

    Google Scholar 

  67. Barton S, Hawkes EA, Wotherspoon A, Cunningham D. Are we ready to stratify treatment for diffuse large B-cell lymphoma using molecular hallmarks? Oncologist. 2012;17:1562–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bai M, Tsanou E, Skyrlas A, Sainis I, Agnantis N, Kanavaros P. Alterations of the p53, Rb and p27 tumor suppressor pathways in diffuse large B-cell lymphomas. Anticancer Res. 2007;27:2345–52.

    CAS  PubMed  Google Scholar 

  69. Vasanwala FH, Kusam S, Toney LM, Dent AL. Repression of AP-1 function: a mechanism for the regulation of Blimp-1 expression and B lymphocyte differentiation by the B cell lymphoma-6 protooncogene. J Immunol. 2002;169:1922–9.

    Article  CAS  PubMed  Google Scholar 

  70. Arguni E, Arima M, Tsuruoka N, Sakamoto A, Hatano M, Tokuhisa T. JunD/AP-1 and STAT3 are the major enhancer molecules for high Bcl6 expression in germinal center B cells. Int Immunol. 2006;18:1079–89.

    Article  CAS  PubMed  Google Scholar 

  71. Ci W, Polo JM, Cerchietti L, et al. The BCL6 transcriptional program features repression of multiple oncogenes in primary B cells and is deregulated in DLBCL. Blood. 2009;113:5536–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Grötsch B, Brachs S, Lang C, et al. The AP-1 transcription factor Fra1 inhibits follicular B cell differentiation into plasma cells. J Exp Med. 2014;211:2199–212.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Blonska M, Joo D, Zweidler-McKay PA, Zhao Q, Lin X. CARMA1 controls Th2 cell-specific cytokine expression through regulating JunB and GATA3 transcription factors. J Immunol. 2012;188:3160–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Jiang C, Lin X. Regulation of NF-κB by the CARD proteins. Immunol Rev. 2012;246:141–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Bai M, Vlachonikolis J, Agnantis NJ, et al. Low expression of p27 protein combined with altered p53 and Rb/p16 expression status is associated with increased expression of cyclin A and cyclin B1 in diffuse large B-cell lymphomas. Mod Pathol. 2001;14:1105–13.

    Article  CAS  PubMed  Google Scholar 

  76. Bai M, Tsanou E, Agnantis NJ, et al. Expression of cyclin D3 and cyclin E and identification of distinct clusters of proliferative activity and apoptosis status in diffuse large B-cell lymphomas. Histol Histopathol. 2003;18:449–57.

    CAS  PubMed  Google Scholar 

  77. Phan J, Mazloom A, Medeiros LJ, et al. Benefit of consolidative radiation therapy in patients with diffuse large B-cell lymphoma treated with R-CHOP chemotherapy. J Clin Oncol. 2010;28:4170–6.

    Article  PubMed  Google Scholar 

  78. Gaudio F, Giordano A, Perrone T, et al. High Ki67 index and bulky disease remain significant adverse prognostic factors in patients with diffuse large B cell lymphoma before and after the introduction of rituximab. Acta Haematol. 2011;126:44–51.

    Article  CAS  PubMed  Google Scholar 

  79. Pentheroudakis G, Goussia A, Voulgaris E, et al. High levels of topoisomerase IIalpha protein expression in diffuse large B-cell lymphoma are associated with high proliferation, germinal center immunophenotype and response to treatment. Leuk Lymphoma. 2010;51:1260–8.

    Article  CAS  PubMed  Google Scholar 

  80. Bai M, Agnantis NJ, Skyrlas A, et al. Increased expression of the bcl6 and CD10 proteins is associated with increased apoptosis and proliferation in diffuse large B-cell lymphomas. Mod Pathol. 2003;16:471–80.

    Article  CAS  PubMed  Google Scholar 

  81. Andrecht S, Kolbus A, Hartenstein B, Angel P, Schorpp-Kistner M. Cell cycle promoting activity of JunB through cyclin A activation. J Biol Chem. 2002;277:35961–8.

    Article  CAS  PubMed  Google Scholar 

  82. Farràs R, Baldin V, Gallach S, et al. JunB breakdown in mid-/late G2 is required for down-regulation of cyclin A2 levels and proper mitosis. Mol Cell Biol. 2008;28:4173–87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Gururajan M, Chui R, Karuppannan AK, Ke J, Jennings CD, Bondada S. c-Jun N-terminal kinase (JNK) is required for survival and proliferation of B-lymphoma cells. Blood. 2005;106:1382–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ivanov VN, Bhoumik A, Krasilnikov M, et al. Cooperation between STAT3 and c-jun suppresses Fas transcription. Mol Cell. 2001;7:517–28.

    Article  CAS  PubMed  Google Scholar 

  85. Rincon R, Flavell RA. Regulation of AP-1 and NFAT transcription factors during thymic selection of T cells. Mol Cell Biol. 1996;16:1074–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Fung MM, Rohwer F, McGuire KL. IL-2 activation of a PI3 K-dependent STAT3 serine phosphorylation pathway in primary human T cells. Cell Signal. 2003;15:625–36.

    Article  CAS  PubMed  Google Scholar 

  87. Piccaluga PP, Tabanelli V, Pileri SA. Molecular genetics of peripheral T-cell lymphomas. Int J Hematol. 2014;99:219–26.

    Article  CAS  PubMed  Google Scholar 

  88. de Leval L, Gaulard P. Pathology and biology of peripheral T-cell lymphomas. Histopathology. 2011;58:49–68.

    Article  PubMed  Google Scholar 

  89. Mao X, Onadim Z, Price EA, et al. Genomic alterations in blastic natural killer/extranodal natural killer-like T cell lymphoma with cutaneous involvement. J Invest Dermatol. 2003;121:618–27.

    Article  CAS  PubMed  Google Scholar 

  90. Iqbal J, Wright G, Wang C, et al. Gene expression signatures delineate biological and prognostic subgroups in peripheral T-cell lymphoma. Blood. 2014;123:2915–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wang T, Feldman AL, Wada DA, et al. GATA-3 expression identifies a high-risk subset of PTCL, NOS with distinct molecular and clinical features. Blood. 2014;123:3007–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Jaffe ES, Nicolae A, Pittaluga S. Peripheral T-cell and NK-cell lymphomas in the WHO classification: pearls and pitfalls. Mod Pathol. 2013;. doi:10.1038/modpathol.2012.181.

    Google Scholar 

  93. Piccaluga PP, Fuligni F, De Leo A, et al. Molecular profiling improves classification and prognostication of nodal peripheral T-cell lymphomas: results of a phase III diagnostic accuracy study. J Clin Oncol. 2013;31:3019–25.

    Article  PubMed  Google Scholar 

  94. Piccaluga PP, Agostinelli C, Califano A, et al. Gene expression analysis of peripheral T cell lymphoma, unspecified, reveals distinct profiles and new potential therapeutic targets. J Clin Invest. 2007;117:823–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Yoshie O, Fujisawa R, Nakayama T, et al. Frequent expression of CCR4 in adult T-cell leukemia and human T-cell leukemia virus type 1-transformed T cells. Blood. 2002;99:1505–11.

    Article  CAS  PubMed  Google Scholar 

  96. Yoshie O. Expression of CCR4 in adult T-cell leukemia. Leuk Lymphoma. 2005;46:185–90.

    Article  CAS  PubMed  Google Scholar 

  97. Ishida T, Utsunomiya A, Iida S, et al. Clinical significance of CCR4 expression in adult T-cell leukemia/lymphoma: its close association with skin involvement and unfavorable outcome. Clin Cancer Res. 2003;9:3625–34.

    CAS  PubMed  Google Scholar 

  98. Nakachi S, Nakazato T, Ishikawa C, Kimura R, et al. Human T-cell leukemia virus type 1 tax transactivates the matrix metalloproteinase 7 gene via JunD/AP-1 signaling. Biochim Biophys Acta. 2011;1813:731–41.

    Article  CAS  PubMed  Google Scholar 

  99. Le Y, Zhou Y, Iribarren P, Wang J. Chemokines and chemokine receptors: their manifold roles in homeostasis and disease. Cell Mol Immunol. 2004;1:95–104.

    CAS  PubMed  Google Scholar 

  100. Kamioka M, Imamura J, Komatsu N, Daibata M, Sugiura T. Testican 3 expression in adult T-cell leukemia. Leuk Res. 2009;33:913–8.

    Article  CAS  PubMed  Google Scholar 

  101. Hagiya K, Yasunaga J, Satou Y, Ohshima K, Matsuoka M. ATF3, an HTLV-1 bZip factor binding protein, promotes proliferation of adult T-cell leukemia cells. Retrovirology. 2011;8:19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Thieblemont C, Davi F, Noguera ME, et al. Splenic marginal zone lymphoma: current knowledge and future directions. Oncology (Williston Park). 2012;26:194–202.

    Google Scholar 

  103. Rossi D, Deaglio S, Dominguez-Sola D, et al. Alteration of BIRC3 and multiple other NF-κB pathway genes in splenic marginal zone lymphoma. Blood. 2011;118:4930–4.

    Article  PubMed  Google Scholar 

  104. Rossi D, Trifonov V, Fangazio M, et al. The coding genome of splenic marginal zone lymphoma: activation of NOTCH2 and other pathways regulating marginal zone development. J Exp Med. 2012;209:1537–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Carbone A, Cesarman E, Spina M, Gloghini A, Schulz TF. HIV-associated lymphomas and gamma-herpesviruses. Blood. 2009;113:1213–24.

    Article  CAS  PubMed  Google Scholar 

  106. Courville EL, Sohani AR, Hasserjian RP, Zukerberg LR, Harris NL, Ferry JA. Diverse clinicopathologic features in human herpesvirus 8-associated lymphomas lead to diagnostic problems. Am J Clin Pathol. 2014;142:816–29.

    Article  PubMed  Google Scholar 

  107. An J, Sun Y, Rettig MB. Transcriptional coactivation of c-Jun by the KSHV-encoded LANA. Blood. 2004;103:222–8.

    Article  CAS  PubMed  Google Scholar 

  108. Papoudou-Bai A, Hatzimichael E, Kyriazopoulou L, Briasoulis E, Kanavaros P. Rare variants in the spectrum of HHV8/EBV copositive lymphoproliferations. Hum Pathol. 2015;. doi:10.1016/j.humpath.2015.06.020.

    PubMed  Google Scholar 

  109. Galluzzi L, Bravo-San Pedro JM, Vitale I, et al. Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ. 2015;22:58–73.

    Article  CAS  PubMed  Google Scholar 

  110. Galluzzi L, Pietrocola F, Bravo-San Pedro JM, et al. Autophagy in malignant transformation and cancer progression. EMBO J. 2015;34:856–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Galluzzi L, Bravo-San Pedro JM, Kroemer G. Autophagy mediates tumor suppression via cellular senescence. Trends Cell Biol. 2016;26:1–3.

    Article  CAS  PubMed  Google Scholar 

  112. Shimizu S, Yoshida T, Tsujioka M, Arakawa S. Autophagic cell death and cancer. Int J Mol Sci. 2014;15:3145–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Nikoletopoulou V, Markaki M, Palikaras K, Tavernarakis N. Crosstalk between apoptosis, necrosis and autophagy. Biochim Biophys Acta. 2013;1833:3448–59.

    Article  CAS  PubMed  Google Scholar 

  114. Hu YL, DeLay M, Jahangiri A, et al. Hypoxia-induced autophagy promotes tumor cell survival and adaptation to antiangiogenic treatment in glioblastoma. Cancer Res. 2012;72:1773–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Zhou YY, Li Y, Jiang WQ, Zhou LF. MAPK/JNK signalling: a potential autophagy regulation pathway. Biosci Rep. 2015;. doi:10.1042/BSR20140141.

    Google Scholar 

  116. Li DD, Wang LL, Deng R, et al. The pivotal role of c-Jun NH2-terminal kinase-mediated Beclin 1 expression during anticancer agents-induced autophagy in cancer cells. Oncogene. 2009;28:886–98.

    Article  CAS  PubMed  Google Scholar 

  117. Hasui K, Nagai T, Wang J, et al. Immunohistochemistry of programmed cell death in archival human pathology specimens. Cells. 2012;1:74–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Hasui K, Wang J, Jia X, et al. Enhanced autophagy and reduced expression of cathepsin D are related to autophagic cell death in Epstein-Barr virus-associated nasal natural killer/T-cell lymphomas: an immunohistochemical analysis of Beclin-1, LC3, mitochondria (AE-1), and cathepsin D in nasopharyngeal lymphomas. Acta Histochem Cytochem. 2011;44:119–31.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Huang JJ, Li HR, Huang Y, et al. Beclin 1 expression: a predictor of prognosis in patients with extranodal natural killer T-cell lymphoma, nasal type. Autophagy. 2010;6:777–83.

    Article  PubMed  Google Scholar 

  120. Nicotra G, Mercalli F, Peracchio C, et al. Autophagy-active beclin-1 correlates with favourable clinical outcome in non-Hodgkin lymphomas. Mod Pathol. 2010;23:937–50.

    Article  CAS  PubMed  Google Scholar 

  121. Liu B, Wen X, Cheng Y. Survival or death: disequilibrating the oncogenic and tumor suppressive autophagy in cancer. Cell Death Dis. 2013;. doi:10.1038/cddis.2013.422.

    Google Scholar 

  122. Lin HX, Qiu HJ, Zeng F, et al. Decreased expression of Beclin 1 correlates closely with Bcl-xL expression and poor prognosis of ovarian carcinoma. PLoS One. 2013;. doi:10.1371/journal.pone.0060516.

    Google Scholar 

  123. Liu H, He Z, Simon HU. Autophagy suppresses melanoma tumorigenesis by inducing senescence. Autophagy. 2014;. doi:10.4161/auto.27163.

    Google Scholar 

  124. Yue Z, Jin S, Yang C, et al. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci USA. 2003;100:15077–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Qu X, Yu J, Bhagat G, et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest. 2003;112:1809–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Molavi O, Samadi N, Wu C, Lavasanifar A, Lai R. Silibinin suppresses NPM-ALK, potently induces apoptosis and enhances chemosensitivity in ALK-positive anaplastic large cell lymphoma. Leuk Lymphoma. 2015;28:1–9.

    Article  CAS  Google Scholar 

  127. Kiss I, Unger C, Huu CN, et al. Lobatin B inhibits NPM/ALK and NF-κB attenuating anaplastic-large-cell-lymphomagenesis and lymphendothelial tumour intravasation. Cancer Lett. 2015;356:994–1006.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alexandra Papoudou-Bai or Panagiotis Kanavaros.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papoudou-Bai, A., Hatzimichael, E., Barbouti, A. et al. Expression patterns of the activator protein-1 (AP-1) family members in lymphoid neoplasms. Clin Exp Med 17, 291–304 (2017). https://doi.org/10.1007/s10238-016-0436-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-016-0436-z

Keywords

Navigation