Skip to main content
Log in

Unfolded protein response inducers tunicamycin and dithiothreitol promote myeloma cell differentiation mediated by XBP-1

  • Original Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

The unfolded protein response (UPR) is an essential pathway for both normal and malignant plasma cells to maintain endoplasmic reticulum (ER) homeostasis in response to the large amount of immunoglobulin (Ig) output. The inositol-requiring enzyme 1-X-box binding protein-1 (IRE1-XBP-1) arm of the UPR pathway has been shown to play crucial roles not only in relieving the ER stress by up-regulating a series of genes favoring ER-associated protein degradation and protein folding, but in mediating terminal plasmacytic differentiation and maturation. Myeloma cells comprise various subsets arrested in diverse differentiated phases, and the immaturity of myeloma cells has been taken as a marker for poor prognosis, suggesting that differentiation induction would be a promising therapeutic strategy for myeloma. Herein, we used low-dose pharmacological UPR inducers such as tunicamycin (TM) and dithiothreitol (DTT) to efficiently activate the IRE1-XBP-1 pathway in myeloma cells characterized by transcriptional expression increase in spliced XBP-1 and molecular chaperons, accompanied by significant differentiation and maturation of these myeloma cells, without concomitant cytotoxicity. These differentiated myeloma cells exhibited a more mature appearance with well-developed cytoplasm and a reduced nucleocytoplasmic ratio, and a further differentiated phenotype with markedly increased expression of CD49e together with significantly elevated cellular secretion of Ig light chain as shown by flow cytometry and ELISA, in contrast to the control myeloma cells without exposed to TM or DTT. Moreover, siRNA knockdown of XBP-1 disrupted TM- or DTT-induced myeloma cell differentiation and maturation. Our study, for the first time, validated that the modest activation of the UPR pathway enables myeloma cells to further differentiate, and identified that XBP-1 plays an indispensable role in UPR-mediated myeloma cell differentiation and maturation. Thus, we provided the rationale and feasibility for the exploration of the novel therapeutic strategy of differentiation induction for plasmacytic malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ER:

Endoplasmic reticulum

UPR:

Unfolded protein response

XBP-1:

X-box binding protein-1

GRP78:

Glucose-regulated protein 78

GRP94:

Glucose-regulated protein 94

MM:

Multiple myeloma

PI:

Proteasome inhibitor

References

  1. Laubach J, Richardson P, Anderson K (2011) Multiple myeloma. Annu Rev Med 62:249–264

    Article  CAS  PubMed  Google Scholar 

  2. Stewart AK (2012) Novel therapeutics in multiple myeloma. Hematology 17(Suppl 1):S105–S108

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Ferrarini M, Ferrero E (2011) Proteasome inhibitors and modulators of angiogenesis in multiple myeloma. Curr Med Chem 18:5185–5195

    Article  CAS  PubMed  Google Scholar 

  4. Mi J (2011) Current treatment strategy of acute promyelocytic leukemia. Front Med 5:341–347

    Article  PubMed  Google Scholar 

  5. Kamimura T, Miyamoto T, Harada M, Akashi K (2011) Advances in therapies for acute promyelocytic leukemia. Cancer Sci 102:1929–1937

    Article  CAS  PubMed  Google Scholar 

  6. Al-Sahmani M, Trnavska I, Sevcikova S, Antosova M, Antosova L, Kissova J, Adam Z, Pour L, Nemec P, Greslikova H, Krejci M, Zahradova L, Bulikova A, Penka M, Hajek R (2011) Prognostic significance of morphological assessment of plasma cells in multiple myeloma. Neoplasma 58:554–560

    Article  CAS  PubMed  Google Scholar 

  7. San Miguel JF, Garcia-Sanz R, Gonzalez M, Orfao A (1995) Immunophenotype and DNA cell content in multiple myeloma. Baillieres Clin Haematol 8:735–759

    Article  CAS  PubMed  Google Scholar 

  8. Takishita M, Kosaka M, Goto T, Saito S (1994) Cellular origin and extent of clonal involvement in multiple myeloma: genetic and phenotypic studies. Br J Haematol 87:735–742

    Article  CAS  PubMed  Google Scholar 

  9. Hou J, Xiong H, Gao W, Jiang H (2005) 2-Methoxyestradiol at low dose induces differentiation of myeloma cells. Leuk Res 29:1059–1067

    Article  CAS  PubMed  Google Scholar 

  10. Zhou X, Jiang H, Hou J (2007) Coordination of upregulated XBP-1 and downregulated c-myc during myeloma cell differentiation induced by 2-methoxyestradiol. Leuk Res 31:1259–1265

    Article  CAS  PubMed  Google Scholar 

  11. Jiang H, Gao W, Sze DM, Xiong H, Hou J (2007) Transcription factors Xbp-1, Blimp-1, and BSAP are involved in the regulation of plasmacytic differentiation induced by 2-methoxyestradiol in myeloma cell lines. Int J Hematol 86:429–437

    Article  CAS  PubMed  Google Scholar 

  12. Kallies A, Hasbold J, Fairfax K, Pridans C, Emslie D, McKenzie BS, Lew AM, Corcoran LM, Hodgkin PD, Tarlinton DM, Nutt SL (2007) Initiation of plasma-cell differentiation is independent of the transcription factor Blimp-1. Immunity 26:555–566

    Article  CAS  PubMed  Google Scholar 

  13. Nutt SL, Taubenheim N, Hasbold J, Corcoran LM, Hodgkin PD (2011) The genetic network controlling plasma cell differentiation. Semin Immunol 23:341–349

    Article  CAS  PubMed  Google Scholar 

  14. Ali MM, Bagratuni T, Davenport EL, Nowak PR, Silva-Santisteban MC, Hardcastle A, McAndrews C, Rowlands MG, Morgan GJ, Aherne W, Collins I, Davies FE, Pearl LH (2011) Structure of the Ire1 autophosphorylation complex and implications for the unfolded protein response. EMBO J 30:894–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Michallet AS, Mondiere P, Taillardet M, Leverrier Y, Genestier L, Defrance T (2011) Compromising the unfolded protein response induces autophagy-mediated cell death in multiple myeloma cells. PLoS ONE 6:e25820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Baumann P, Mandl-Weber S, Völkl A, Adam C, Bumeder I, Oduncu F, Schmidmaier R (2009) Dihydroorotate dehydrogenase inhibitor A771726 (leflunomide) induces apoptosis and diminishes proliferation of multiple myeloma cells. Mol Cancer Ther 8:366–375

    Article  CAS  PubMed  Google Scholar 

  17. Greipp PR, Raymond NM, Kyle RA, O’Fallon WM (1985) Multiple myeloma: significance of plasmablastic subtype in morphological classification. Blood 65:305–310

    CAS  PubMed  Google Scholar 

  18. Stommel JM, Wahl GM (2004) Accelerated MDM2 auto-degradation induced by DNA-damage kinases is required for p53 activation. EMBO J 23:1547–1556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schild-Poulter C, Shih A, Yarymowich NC, Haché RJ (2003) Down-regulation of histone H2B by DNA-dependent protein kinase in response to DNA damage through modulation of octamer transcription factor 1. Cancer Res 63:7197–7205

    CAS  PubMed  Google Scholar 

  20. Cirstea D, Hideshima T, Rodig S, Santo L, Pozzi S, Vallet S, Ikeda H, Perrone G, Gorgun G, Patel K, Desai N, Sportelli P, Kapoor S, Vali S, Mukherjee S, Munshi NC, Anderson KC, Raje N (2010) Dual inhibition of akt/mammalian target of rapamycin pathway by nanoparticle albumin-bound-rapamycin and perifosine induces antitumor activity in multiple myeloma. Mol Cancer Ther 9:963–975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kawano MM, Huang N, Harada H, Harada Y, Sakai A, Tanaka H, Iwato K, Kuramoto A (1993) Identification of immature and mature myeloma cells in the bone marrow of human myelomas. Blood 82:564–570

    CAS  PubMed  Google Scholar 

  22. Obeng EA, Carlson LM, Gutman DM, Harrington WJ Jr, Lee KP, Boise LH (2006) Proteasome inhibitors induce a terminal unfolded protein response in multiple myeloma cells. Blood 107:4907–4916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fujii R, Ishikawa H, Mahmoud MS, Asaoku H, Kawano MM (1999) MPC-1-CD49e- immature myeloma cells include CD45+ subpopulations that can proliferate in response to IL-6 in human myelomas. Br J Haematol 105:131–140

    Article  CAS  PubMed  Google Scholar 

  24. Otsuyama K, Asaoku H, Kawano MM (2006) An increase in MPC-1- and MPC-1-CD45+ immature myeloma cells in the progressive states of bone marrow plasmacytosis: the revised phenotypic classification of monoclonal marrow plasmacytosis (MOMP-2005). Int J Hematol 83:39–43

    Article  PubMed  Google Scholar 

  25. Grignani G, Gobbi PG, Formisano R, Pieresca C, Ucci G, Brugnatelli S, Riccardi A, Ascari E (1996) A prognostic index for multiple myeloma. Br J Cancer 73:1101–1107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kurabayashi H, Kubota K, Tsuchiya J, Murakami H, Tamura J, Naruse T (1999) Prognostic value of morphological classifications and clinical variables in elderly and young patients with multiple myeloma. Ann Hematol 78:19–23

    Article  CAS  PubMed  Google Scholar 

  27. Greipp PR (1992) Advances in the diagnosis and management of myeloma. Semin Hematol 29(suppl 2):24–45

    CAS  PubMed  Google Scholar 

  28. Pasqualetti P, Casale R, Collacciani A, Abruzzo BP, Colantonio D (1990) Multiple myeloma: relationship between survival and cellular morphology. Am J Hematol 33:145–147

    Article  CAS  PubMed  Google Scholar 

  29. Ma Y, Shimizu Y, Mann MJ, Jin Y, Hendershot LM (2010) Plasma cell differentiation initiates a limited ER stress response by specifically suppressing the PERK-dependent branch of the unfolded protein response. Cell Stress Chaperones 15:281–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Drori A, Tirosh B (2011) Regulation of immunoglobulin synthesis, modification, and trafficking by the unfolded protein response a quantitative approach. Methods Enzymol 491:309–325

    Article  CAS  PubMed  Google Scholar 

  31. Aragon IV, Barrington RA, Jackowski S, Mori K, Brewer JW (2012) The specialized unfolded protein response of B lymphocytes: ATF6α-independent development of antibody-secreting B cells. Mol Immunol 51:347–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gass JN, Gifford NM, Brewer JW (2002) Activation of an unfolded protein response during differentiation of antibody-secreting B cells. J Biol Chem 277:49047–49054

    Article  CAS  PubMed  Google Scholar 

  33. Gass JN, Jiang HY, Wek RC, Brewer JW (2008) The unfolded protein response of B-lymphocytes: PERK- independent development of antibody- secreting cells. Mol Immunol 45:1035–1043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hu CC, Dougan SK, McGehee AM, Love JC, Ploegh HL (2009) XBP-1 regulates signal transduction, transcription factors and bone marrow colonization in B cells. EMBO J 28:1624–1636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Todd DJ, Lee AH, Glimcher LH (2008) The endoplasmic reticulum stress response in immunity and autoimmunity. Nat Rev Immunol 8:663–674

    Article  CAS  PubMed  Google Scholar 

  36. Davenport EL, Moore HE, Dunlop AS, Sharp SY, Workman P, Morgan GJ, Davies FE (2007) Heat shock protein inhibition is associated with activation of the unfolded protein response pathway in myeloma plasma cells. Blood 110:2641–2649

    Article  CAS  PubMed  Google Scholar 

  37. Marcu MG, Doyle M, Bertolotti A, Ron D, Hendershot L, Neckers L (2002) Heat shock protein 90 modulates the unfolded protein response by stabilizing IRE1alpha. Mol Cell Biol 22:8506–8513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Meister S, Schubert U, Neubert K, Herrmann K, Burger R, Gramatzki M, Hahn S, Schreiber S, Wilhelm S, Herrmann M, Jäck HM, Voll RE (2007) Extensive immunoglobulin production sensitizes myeloma cells for proteasome inhibition. Cancer Res 67:1783–1792

    Article  CAS  PubMed  Google Scholar 

  39. Ling SC, Lau EK, Al-Shabeeb A, Nikolic A, Catalano A, Iland H, Horvath N, Ho PJ, Harrison S, Fleming S, Joshua DE, Allen JD (2012) Response of myeloma to the proteasome inhibitor bortezomib is correlated with the unfolded protein response regulator XBP-1. Haematologica 97:64–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Leung-Hagesteijn C, Erdmann N, Cheung G, Keats JJ, Stewart AK, Reece DE, Chung KC, Tiedemann RE (2013) XBP-1 s-negative tumor B cells and pre-plasmablasts mediate therapeutic proteasome inhibitor resistance in multiple myeloma. Cancer Cell 24:289–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported in part by funds from National Natural Science Foundation of China (NSFC, Grant Numbers: 30770924 and 30800489). The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Hou.

Additional information

Hua Jiang and Jianfeng Zou have contributed equally to this work and are considered co-first authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10238_2013_269_MOESM1_ESM.tif

Supplementary material 1 (TIFF 9264 kb): siRNA knockdown of XBP-1 aborted TM- and DTT-induced increase of CD49e expression proportion and Ig light chain production in primary myeloma cells. The primary myeloma cells from 3 newly diagnosed patients were transfected by XBP-1 siRNA or mock (non-silencing siRNA), followed by incubation with 0.4 μM TM or 0.5 mM DTT for 72 h. The CD49e expression levels (A) and the concentration of light chain protein in the supernatant (B) were determined by flow cytometry or ELISA

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, H., Zou, J., Zhang, H. et al. Unfolded protein response inducers tunicamycin and dithiothreitol promote myeloma cell differentiation mediated by XBP-1. Clin Exp Med 15, 85–96 (2015). https://doi.org/10.1007/s10238-013-0269-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-013-0269-y

Keywords

Navigation