Skip to main content

Advertisement

Log in

Tidal simulation revisited

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

Accurate representation of tides is a pre-requisite for simulating many complex coastal processes. This study examines several most important factors for rigorous validation of nearshore tides: bottom friction, quality of DEM (Digital Elevation Model) information, horizontal resolution of model mesh, and 3D baroclinic effects. The results demonstrate that a rigorous model validation against tide gauge observation requires (1) good-quality DEM information be available; (2) locally very high mesh resolution (which has not been used in previous models) be used to capture the small-scale bathymetric/geometric features near the tide gauges; and (3) 3D effects be included. On the other hand, attempts to compensate errors by tuning other parameters such as bottom friction might produce erroneous results away from the validation sites, as tides undergo complex nonlinear transformations in the nearshore regime. Consequently, a most skilled tidal simulation should use a 3D model with locally very high resolution to faithfully represent DEMs of good quality (not just high resolution). Our results also highlight the central role played by the bathymetry on coastal processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

All data generated and/or analyzed during this study are available from the corresponding author on reasonable request.

References

  • Amante C (2018) Estimating coastal digital elevation model uncertainty. J of Coast Res 34(6):1382–1397

    Article  Google Scholar 

  • Amante C, Eakins BW (2009) ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis. NOAA Technical Memorandum NESDIS NGDC-24

  • Cai H, Savenije HHG, Yang Q, Suying O, Yaping L (2012) Influence of river discharge and dredging on tidal wave propagation: Modaomen estuary case. J Hydraul Eng 138(10):885–896. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000594

    Article  Google Scholar 

  • Cai X, Zhang Y, Shen J, Wang HV, Wang Z, Qin Q, Ye F (2020) A numerical study of hypoxia in Chesapeake Bay using an unstructured grid model: validation and sensitivity to bathymetry representation. J Am Water Resour Assoc. https://doi.org/10.1111/1752-1688.12887

  • Carrere L, Lyard F, Cancet M, Guillot A, Picot N (2016) FES 2014, a new tidal model—validation results and perspectives for improvements. Prague, Czech Republic, ESA, Living Planet Symp.

    Google Scholar 

  • Chen C, Huang H, Beardsley RC, Xu Q, Limeburner R, Cowles GW, Sun Y, Qi J, Lin H (2011) Tidal dynamics in the Gulf of Maine and New England shelf: an application of FVCOM. J Geophys Res -Oceans 116:C12010

    Article  Google Scholar 

  • Colosi JA, Munk W (2006) Tales of the venerable Honolulu tide gauge. J Phys Oceanogr 36(6):967–996. https://doi.org/10.1175/JPO2876.1

    Article  Google Scholar 

  • Danielson JJ, Poppenga SK, Tyler DJ, Palaseanu-Lovejoy M, Gesch DB (2018) Coastal National Elevation Database: U.S. Geological Survey Fact Sheet 2018–3037, 2 p., https://doi.org/10.3133/2018

  • Du J, Shen J, Zhang YJ, Ye F, Liu Z, Wang Z et al (2018) Tidal response to sea-level rise in different types of estuaries: the importance of length, bathymetry, and geometry. Geophys Res Lett 45:227–235. https://doi.org/10.1002/2017GL075963

    Article  Google Scholar 

  • Duda TF, Lin Y, Buijsman M, Newhall AE (2018) Internal tidal modal ray refraction and energy ducting in baroclinic gulf stream currents. J Phys Oceanogr 48(9): 1969–1993.https://journals.ametsoc.org/view/journals/phoc/48/9/jpo-d-18-0031.1.xml

  • Egbert GD, Ray RD (2001) Estimates of M2 tidal energy dissipation from TOPEX/Poseidon altimeter data. J Geophys Res 106(C10):22475–22502. https://doi.org/10.1029/2000JC000699

    Article  Google Scholar 

  • Egbert GD, Ray RD (2003) Semi-diurbal and tidal dissipation from TOPEX/Poseidon altimetry. Geophys Res Lett 30(17):1907

    Article  Google Scholar 

  • Egbert GD, Ray RD, Bills BG (2004) Numerical modeling of the global semidiurnal tide in the present day and in the last glacial maximum. J Geophys Res 109:C03003. https://doi.org/10.0129/2003JC001973

    Article  Google Scholar 

  • Foreman MGG, Henry RF, Walters RA, Ballantyne VA (1993) A finite element model for tides and resonance along the north coast of British Columbia. J Geophys Res Oceans 98(C2):2509–2531. https://doi.org/10.1029/92JC02470

    Article  Google Scholar 

  • Fringer OB, Dawson CN, He R, Ralston DK, Zhang YJ (2019) The future of coastal and estuarine modeling: findings from a workshop. Ocean Model 143:101485

    Article  Google Scholar 

  • Garrett C, Kunze E (2007) Internal Tide Generation in the Deep Ocean. Annu Rev Fluid Mech 39:57–87

    Article  Google Scholar 

  • Green JAM, Nycander J (2013) A comparison of tidal conversion parameterizations for tidal models. J Phys Oceanogr 43:104–119. https://doi.org/10.1175/JPO-D-12-023.1

    Article  Google Scholar 

  • Haigh ID, Pickering MD, Green JAM, Arbic BK, Arns A, Dangendorf S, Hill DF, Horsburgh K, Howard T, Idier D, Jay DA, Jänicke L, Lee SB, Müller M, Schindelegger M, Talke SA, Wilmes S (2020) The tides they Are A‐Changin’: A comprehensive review of past and future nonastronomical changes in tides their driving mechanisms and future implications. Reviews of Geophysics 58(1). https://doi.org/10.1029/2018RG000636

  • Huang W, Ye F, Zhang Y, Park K, Du J, Moghimi S, Myers E, Pe’eri S, Calzada JR, Yu HC, Nunez K, Liu Z (2021) Compounding factors for extreme flooding around Galveston Bay during Hurricane Harvey. Ocean Model 158:101735

    Article  Google Scholar 

  • Jay D, Flinchem EP (1999) A comparison of methods for analysis of tidal records containing multi-scale non-tidal background energy. Cont Shelf Res 19(13):1695–1732

    Article  Google Scholar 

  • Kang D, Fringer O (2012) Energetics of barotropic and baroclinic tides in the Monterey Bay area. J Phys Oceanogr 42:272–290

    Article  Google Scholar 

  • Klymak JM, Moum JN, Nash JD, Kunze E, Girton JB, Carter GS, Lee CM, Sanford TB, Gregg MC (2006) An estimate of tidal energy lost to turbulence at the Hawaiian ridge. J Physical Oceanogr 36(6):1148–1164

    Article  Google Scholar 

  • Lu X, Zhang J (2006) Numerical study on spatially varying bottom friction coefficient of a 2D tidal model with adjoint method. Cont Shelf Res 26:1905–1023

    Article  Google Scholar 

  • Müller M (2011) Rapid change in semi-diurnal tides in the North Atlantic since 1980. Geophys Res Lett 38:L11602. https://doi.org/10.1029/2011GL047312

    Article  Google Scholar 

  • Munk W, Wunsch C (1998) Abyssal recipes II: energetics of tidal and wind mixing. Deep-Sea Res 45:1977–2010

    Article  Google Scholar 

  • Muñoz-Sabater J (2019) ERA5-Land hourly data from 1981 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). (Accessed on < DD-MMM-YYYY >), https://doi.org/10.24381/cds.e2161bac

  • Nicolle A, Karpytchev M (2007) Evidence for spatially variable friction from tidal amplification and asymmetry in the Pertuis Breton (France). Cont Shelf Res 27:2346–2356

    Article  Google Scholar 

  • Pringle WJ, Wirasaet D, Roberts KJ, Westerink JJ (2021) Global storm tide modeling with ADCIRC v55: unstructured mesh design and performance, Geoscientific Model Dev 14(2): 1125–1145. https://gmd.copernicus.org/articles/14/1125/2021

  • Pugh DT (1987) Tides, surges and mean sea level. United States: N. p

  • Schindelegger M, Green JAM, Wilmes S-B, Haigh ID (2018) Can we model the effect of observed sea level rise on tides? J Geophys Res Oceans 123:4593–4609. https://doi.org/10.1029/2018JC013959

    Article  Google Scholar 

  • Stanev EV, Grashorn S, Zhang Y (2017) Cascading ocean basins: numerical simulations of the circulation and interbasin exchange in the Azov-Black-Marmara-Mediterranean Seas system. Ocean Dyn. https://doi.org/10.1007/s10236-017-1071-2

    Article  Google Scholar 

  • Umlauf L, Burchard H (2003) A generic length-scale equation for geophysical turbulence models. J Mar Res 61(2):235–265

    Article  Google Scholar 

  • Valentim JM, Vaz L, Vaz N, Silva H, Duarte B, Caçador I, Dias JM (2013) Sea level rise impact in residual circulation in Tagus estuary and Ria de Aveiro lagoon. J Coast Res 165:1981–1986. https://doi.org/10.2112/SI65-335.1

    Article  Google Scholar 

  • Ye F, Zhang Y, Wang H, Friedrichs MAM, Irby ID, Alteljevich E, Valle-Levinson A, Wang Z, Huang H, Shen J, Du J (2018) A 3D unstructured-grid model for Chesapeake Bay: importance of bathymetry. Ocean Model 127:16–39

    Article  Google Scholar 

  • Ye F, Zhang Y, He R, Wang Z, Wang HV, Du J (2019) Third-order WENO transport scheme for simulating the baroclinic eddying ocean on an unstructured grid. Ocean Model 143:101466. https://doi.org/10.1016/j.ocemod.2019.101466

    Article  Google Scholar 

  • Ye F, Zhang Y, Yu H, Sun W, Moghimi S, Myers EP, Nunez K, Zhang R, Wang HV, Roland A, Martins K, Bertin X, Du J, Liu Z (2020) Simulating storm surge and compound flooding events with a creek-to-ocean model: importance of baroclinic effects. Ocean Model 145. https://doi.org/10.1016/j.ocemod.2019.101526

  • Ye F, Huang W, Zhang YJ, Moghimi S, Myers E, Pe’eri S, Yu H-C (2021) A cross-scale study for compound flooding processes during Hurricane Florence. Nat Hazards Earth Syst Sci 21:1703–1719

    Article  Google Scholar 

  • Zhang Y, Ye F, Stanev EV, Grashorn S (2016) Seamless cross-scale modeling with SCHISM. Ocean Model 102:64–81. https://doi.org/10.1016/j.ocemod.2016.05.002

    Article  Google Scholar 

  • Zhang Y, Ye F, Yu H, Sun W, Moghimi S, Myers EP, Nunez K, Zhang R, Wang HV, Roland A, Du J, Liu Z (2020) Simulating compound flooding events in a hurricane. Ocean Dyn 70:621–640

    Article  Google Scholar 

Download references

Funding

This work is funded by NOAA’s Water Initiative (Grant Number NA16NWS4620043). The authors thank Dr. Shachak Peeri for useful discussions for the manuscript and Dr. Linus Magnusson (ECMWF) for providing the high-resolution ERA forcing. Simulations used in this paper were conducted using the following computational facilities: (1) William & Mary Research Computing for providing computational resources and/or technical support (URL: https://www.wm.edu/it/rc); (2) the Extreme Science and Engineering Discovery Environment (XSEDE; Grant TG-OCE130032), which is supported by the National Science Foundation grant number OCI-1053575; and (3) the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Huang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Guoping Gao

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, W., Zhang, Y.J., Wang, Z. et al. Tidal simulation revisited. Ocean Dynamics 72, 187–205 (2022). https://doi.org/10.1007/s10236-022-01498-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-022-01498-9

Keywords

Navigation