Skip to main content

Advertisement

Log in

Geochemistry of CO2 in Steel Slag Leach Beds

CO2-Geochemie in Festbettreaktoren aus Stahlschlacke

Geoquímica de CO2 en lechos de lixiviación de escoria de acero

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

Performance data was previously collected from steel slag leach beds (SLBs) being used to treat AMD in southeastern Ohio. During initial analysis of the SLB performance, it was postulated that CO2 geochemistry significantly affected the performance through precipitation of carbonate minerals in the flow paths of the SLB. To verify this postulation, we conducted a further investigation of the CO2 geochemistry in the SLBs, including extended geochemical analyses and additional X-ray diffractometer analyses. Since the primary geochemical reaction of CO2 in SLBs is mineral carbonation with calcium, a simple model was used to calculate the Ca dissolution potentials in the SLBs. The molar values for Ca dissolution potential were then used along with each SLB’s influent chemical concentrations in PHREEQC geochemical analyses to verify effluent concentrations and calcite precipitation. Results showed good agreement between the modeled effluent concentrations and the actual data, indicating that this approach can be used to estimate calcite precipitation within SLB systems.

Zusammenfassung

Im Südosten Ohios werden zur Behandlung von sauren Grubenwässern Festbettreaktoren aus Stahlschlacke (SLBs) verwendet. Aus den Festbettreaktoren wurden zuvor Analysedaten gesammelt. Auf Grund der ersten Analysen des SLB-Verfahrens wurde davon ausgegangen, dass die CO2-Geochemie das Verfahren signifikant durch Karbonatfällung beeinflusst. Wir führten weitere Untersuchungen zur CO2-Geochemie in SLBs durch, um diese Annahme zu überprüfen. Diese Untersuchungen beinhalteten erweiterte geochemische Analysen und Röntgendiffraktometeranalysen (XRD). Da die Karbonatisierung mit Calcium die wesentliche geochemische Reaktion des CO2 in SLBs ist, wurde ein einfaches Modell zur Berechnung des Ca-Löslichkeitspotentials in den SLBs angewendet. Die molaren Werte des Ca-Löslichkeitspotentials wurden zusammen mit den chemischen Konzentrationen im Zulauf der SLBs in PHREEQC verwendet, um die Konzentration im Ablauf sowie die Calcitfällung zu prüfen. Die Ergebnisse zeigen eine gute Übereinstimmung zwischen den modellierten und den gemessenen Konzentrationen im Ablauf. Dies zeigt, dass diese Vorgehensweise genutzt werden kann, um die Calcitfällung in SLBs abzuschätzen.

Resumen

Se colectaron datos de comportamiento de lechos de lixiviación de escorias de acero (SLBs) que estaban siendo usadas para tratar AMD en el sudeste de Ohio. En un análisis inicial se propuso que la geoquímica de CO2 afectó significativamente el comportamiento a través de la precipitación de carbonato en los pasos del flujo de SLB. Para verificar esta hipótesis, se realizó una investigación posterior sobre la geoquímica del CO2 en los SLBs, incluyendo análisis geoquímicos extendidos y análisis de difracción de rayos X (XRD). Debido a que la reacción geoquímica primaria del CO2 en los SLBs es carbonatación con Ca, se desarrolló un modelo simple para calcular la potencial disolución de Ca en los SLBs. Los valores molares para la disolución de Ca fueron luego usados para cada concentración del influente dentro de los análisis geoquímicos PHREEQC para verificar las concentraciones del efluente y la precipitación de calcita. Los resultados mostraron buen acuerdo entre los datos reales y los predichos por el modelo, indicando que esta aproximación puede ser usada para estimar la precipitación de calcita dentro de los sistemas SLB.

抽象

本文收集了大量钢渣滤床(SLBs)行为特征的资料以指导俄亥俄东南地区酸性矿山废水(AMD)处理技术研究。在分析钢渣滤床(SLBs)地球化学行为特征的时候,通常假定二氧化碳(CO2)控制着钢渣滤床(SLBs)中水流通道内的碳酸盐矿物沉淀。为证明该假设,进一步试验研究了二氧化碳(CO2)在钢渣滤床(SLBs)中的地球化学特征,试验包括补充地球化学分析和X射线分析等。由于二氧化碳(CO2)在钢渣滤床(SLBs)中的主要地球化学反应是钙(Ca)的碳酸盐化,采用一种简便模型计算钙(Ca)在钢渣滤床(SLBs)的溶解势。钙(Ca)溶解势的摩尔值与每个钢渣滤床(SLBs)注入液的浓度一起用于PHREEQC模型计算,以验证SLB流出液体浓度和钙(Ca)沉淀数量。结果证明,模拟的SLB出流液浓度和实际观测值吻合较好,该方法能够用以评价SLB钙(Ca)沉淀特征。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Back M, Bauer M, Stanjek H, Peiffer S (2011) Sequestration of CO2 after reaction with alkaline earth metal oxides CaO and MgO. Appl Geochem 26:1097–1107

    Article  Google Scholar 

  • Bonenfant D, Kharoune L, Sauve S, Hausler R, Niquette P, Mimeault M, Kharoune M (2008) CO2 sequestration potential of steel slags at ambient pressure and temperature. Ind Eng Chem Res 47:7610–7616

    Article  Google Scholar 

  • Chang E–E, Chenb C-H, Chenc Y-H, Panb S-Y, Chiangb P-C (2011) Performance evaluation for carbonation of steel-making slags in a slurry reactor. J Hazard Mater 186:558–564

    Article  Google Scholar 

  • Crittenden J, Trussell RR, Hand DW (2005) Water treatment: principles and design, 2nd edn. Wiley, Hoboken

    Google Scholar 

  • De Windt L, Chaurand P, Rose J (2011) Kinetics of steel slag leaching: batch tests and modeling. Waste Manag 31:225–235

    Article  Google Scholar 

  • Doucet FJ (2010) Effective CO2-specific sequestration capacity of steel slags and variability in their leaching behaviour in view of industrial mineral carbonation. Miner Eng 23:262–269

    Article  Google Scholar 

  • Eloneva S, Teir S, Salminen J, Fogelholm C-J, Zevenhoven R (2008) Steel converter slag as a raw material for precipitation of pure calcium carbonate. Ind Eng Chem Res 47:7104–7111

    Article  Google Scholar 

  • Eloneva S, Teir S, Revitzer H, Salminen J, Said A, Fogelholm C-J, Zevenhoven R (2009) Reduction of CO2 emissions from steel plants by using steelmaking slags for production of marketable calcium carbonate. Steel Res Int 80(6):415–421

    Google Scholar 

  • Eloneva S, Said A, Fogelholm C-J, Zevenhoven R (2012) Preliminary assessment of a method utilizing carbon dioxide and steelmaking slags to produce precipitated calcium carbonate. Appl Energ 90(1):329–334

    Article  Google Scholar 

  • Goetz ER, Riefler RG (2014) Performance of steel slag leach beds in acid mine drainage treatment. Chem Eng J 240:579–588. doi:10.1016/j.cej.2013.10.080

    Article  Google Scholar 

  • Huijgen WJJ, Comans RNJ (2006) Carbonation of steel slag for CO2 sequestration: leaching of products and reaction mechanisms. Environ Sci Technol 40:2790–2796

    Article  Google Scholar 

  • Huijgen WJJ, Witkamp G-J, Comans RNJ (2005) Mineral CO2 sequestration by steel slag carbonation. Environ Sci Technol 39:9676–9682

    Article  Google Scholar 

  • Kirchofer A, Brandt A, Krevor S, Prigiobbe V, Wilcox J (2012) Impact of alkalinity sources on the life-cycle energy efficiency of mineral carbonation technologies. Energ Environ Sci 5:8631

    Article  Google Scholar 

  • Kruse NA, Mackey AL, Bowman JR, Brewster K, Riefler RG (2012) Alkalinity production as an indicator of failure in steel slag leach beds treating acid mine drainage. Environ Earth Sci 67(5):1389–1395

    Article  Google Scholar 

  • Mayes WM, Aumonier J, Jarvis AP (2009) Preliminary evaluation of a constructed wetland for treating extremely alkaline (pH 12) steel slag drainage. Water Sci Technol 55(11):2253–2263

    Article  Google Scholar 

  • Motz H, Geiseler J (2001) Products of steel slags an opportunity to save natural resources. Waste Manag 21:285–293

    Article  Google Scholar 

  • Mulopo J, Mashego M, Zvimba JN (2012) Recovery of calcium carbonate from steelmaking slag and utilization for acid mine drainage pre-treatment. Water Sci Technol 65(12):2236–2241

    Article  Google Scholar 

  • Navarro C, Diaz M, Villa-Garcia MA (2010) Physico-chemical characterization of steel slag. Study of its behavior under simulated environmental conditions. Environ Sci Technol 44:5383–5388

    Article  Google Scholar 

  • Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (version 2)—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. USGS WRI Report 99-4259, Washington, DC

  • Shi C (2004) Steel slag—its production, processing characteristics, and cementitious properties. J Mater Civil Eng 16(3):230–236

    Article  Google Scholar 

  • van Zomeren A, van der Laan SR, Kobesen HBA, Huijgen WJJ, Comans RNJ (2011) Changes in mineralogical and leaching properties of converter steel slag resulting from accelerated carbonation at low CO2 pressure. Waste Manag 31(11):2236–2244

    Article  Google Scholar 

  • Yu J, Wang K (2011) Study on characteristics of steel slag for CO2 capture. Energ Fuels 25:5483–5492. doi:10.1021/ef2004255

    Article  Google Scholar 

  • Ziemkiewicz P (1998) Steel slag: applications for AMD control. In: Proceedings of conference on hazardous waste research, Snowbird, UT

Download references

Acknowledgments

This work was supported by a cooperative agreement between Ohio University and the Ohio Dept of Natural Resources, Division of Mineral Resources Management.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Guy Riefler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goetz, E.R., Riefler, R.G. Geochemistry of CO2 in Steel Slag Leach Beds. Mine Water Environ 34, 42–49 (2015). https://doi.org/10.1007/s10230-014-0290-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-014-0290-8

Keywords

Navigation