Skip to main content
Log in

Groundwater extraction among overlapping generations: a differential game approach

  • Published:
Decisions in Economics and Finance Aims and scope Submit manuscript

Abstract

Groundwater is a common resource that has been wasted for years. Today, we pay the consequences of such inappropriate exploitation and we are aware that it is necessary to realize policies in order to guarantee the use of this resource for future generations. In fact, the irrational exploitation of water by agents, nevertheless it is a renewable resource, may cause its exhaustion. In our paper, we develop a differential game to determine the efficient extraction of groundwater resource among overlapping generations. We consider intragenerational as well as intergenerational competition between extractors that exploit the resource in different time intervals, and so the horizons of the players in the game are asynchronous. Feedback equilibria have been computed in order to determine the optimal extraction rate of “young” and “old” agents that coexist in the economy. The effects of the withdrawal by several generations are numerically and graphically analyzed in order to obtain results on the efficiency of the groundwater resource.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Banker, R.D.: A game theoretic approach to measuring efficiency. Eur. J. Oper. Res. 5(4), 262–268 (1980)

    Article  Google Scholar 

  • Banker, R.D., Charnes, A., Cooper, W.W., Clarke, R.: Constrained game formulation and interpretations for data envelopment analysis. Eur. J. Oper. Res. 40(3), 299–308 (1989)

    Article  Google Scholar 

  • Basar, T., Olsder, G.J.: Dynamic Noncooperative Game Theory. Academic Press, New York (1995)

    Google Scholar 

  • Biancardi, M., Maddalena, L.: Competition and cooperation in the exploitation of the groudwater resource. Decis. Econ. Finance 41(2), 219–237 (2018)

    Article  Google Scholar 

  • Biancardi, M., Maddalena, L.: Groundwater management and agriculture. In: International Scientific Conference on IT, Tourism, Economics, Management and Agriculture (2019)

  • Burton, P.: Intertemporal preferences and intergenerational equity considerations in optimal resources harvesting. J. Environ. Econ. Manag. 24(2), 119–132 (1993)

    Article  Google Scholar 

  • Carrera, C., Moran, M.: General dynamics in overlapping generations models. J. Econ. Dyn. Control 19(4), 813–830 (1995)

    Article  Google Scholar 

  • Chiarella, C., Kemp, M.C., Long, N.V., Okuguchi, K.: On the economics of international fisheries. Int. Econ. Rev. 25, 85–92 (1984)

    Article  Google Scholar 

  • Clemhout, S., Wan, HJr: Dynamic common property resources and environmental problems. J. Optim. Theory Appl. 46, 471–481 (1985)

    Article  Google Scholar 

  • Esteban, E., Albiac, J.: Groundwater and ecosystems damages: questioning the Gisser–Sanchez effect. Ecol. Econ. 70(11), 2062–2069 (2011)

    Article  Google Scholar 

  • Gisser, M., Sanchez, D.A.: Competition versus optimal control in groundwater pumping. Water Resour. Res. 16(4), 638–642 (1980)

    Article  Google Scholar 

  • Grilli, L.: Resource extraction activity: an intergenerational approach. In: Petrosjan, M. (ed.) Game Theory and Applications, vol. 13, pp. 45–55. Nova Science Publishers, Hauppauge (2008)

    Google Scholar 

  • Jørgensen, S., Yeung, D.: Stochastic differential game model of a common property fishery. J. Optim. Theory Appl. 90(2), 391–403 (1996)

    Article  Google Scholar 

  • Jørgensen, S., Yeung, D.W.K.: Inter-and intragenerational renewable resource extraction. Ann. Oper. Res. 88, 275–289 (1999)

    Article  Google Scholar 

  • Kaitala, V.: Equilibria in a stochastic resource management game under imperfect information. Eur. J. Oper. Res. 71(3), 439–453 (1993)

    Article  Google Scholar 

  • Koundouri, P.: Current issues in the economics of groundwater resource management. J. Econ. Surv. 18(5), 703–740 (2004)

    Article  Google Scholar 

  • Mourmouras, A.: Conservationist government policies and intergenerational equity in an overlapping generations model with renewable resources. J. Public Econ. 51(2), 249–268 (1993)

    Article  Google Scholar 

  • Negri, D.H.: The common property aquifer as a differential game. Water Resour. Res. 25(1), 9–15 (1989)

    Article  Google Scholar 

  • Provencher, B., Burt, O.: The externalities associated with the common property exploitation of groundwater. J. Environ. Econ. Manag. 24(2), 139–158 (1993)

    Article  Google Scholar 

  • Rubio, S.J., Casino, B.: Competitive versus efficient extraction of a common property resource. The groundwater case. J. Econ. Dyn. Control 25(8), 1117–1137 (2001)

    Article  Google Scholar 

  • Rubio, S.J., Casino, B.: Strategic behavior and efficiency in the common property extraction of groundwater. Environ. Resource Econ. 26, 73–87 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Villani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

Performing the maximization problem in Eqs. (11) and (12) with respect to \(w_i^j\) and \(w_i^{j-1}\), for \(t\,\in \,[t_j,t_j+T/2]\), we obtain:

$$\begin{aligned}&\frac{2\phi _i^{j*}(H,t)+\sum \limits _{h=1}^n\phi _h^{j-1**}(H,t)+ \sum \limits _{h=1,h\ne i}^n \phi _h^{j*}(H,t)-g}{k} \nonumber \\&\quad =[c_0-c_1 H(t)]-\frac{\displaystyle \partial V_i^{j*}(H,t)}{\partial H} \cdot \frac{(\gamma -1)}{\Delta S}e^{r(t-t_j)} \end{aligned}$$
(25)

and

$$\begin{aligned}&\frac{2\phi _i^{j-1**}(H,t)+\sum \limits _{h=1,h\ne i}^n \phi _h^{j-1**}(H,t)+ \sum \limits _{h=1}^n\phi _{h}^{j*}(H,t)-g}{k}\nonumber \\&\quad =[c_0-c_1H(t)]-\frac{\partial V_i^{j-1**}(H,t)}{\partial H}\cdot \frac{(\gamma -1)}{\Delta S}e^{r(t-t_j)} \end{aligned}$$
(26)

Adding in Eqs. (25) and (26) over all extractors living in the time interval \([t_j, t_j + T/2]\), that is, all the n “young” agents for the generation j and the n “old” agents for the generation \(j-1\), we obtain:

$$\begin{aligned}&\displaystyle \frac{2n\phi _i^{j*}(H,t)+n^2\phi _h^{j-1**}(H,t)+n(n-1)\phi _h^{j*}(H,t)}{k}\nonumber \\&\quad =\frac{ng}{k}+n [c_0-c_1H(t)]-\sum _{i=1}^n\frac{\partial V_i^{j*}(H,t)}{\partial H}\cdot \frac{(\gamma -1)}{\Delta S}e^{r(t-t_j)} \end{aligned}$$
(27)

for all ith extractor in the jth generation and

$$\begin{aligned}&\frac{2n\phi _i^{j-1**}(H,t)+n^2\phi _h^{j*}(H,t)+n(n-1)\phi _h^{j-1**}(H,t)}{k}\nonumber \\&\quad =\frac{ng}{k}+n [c_0-c_1H(t)]-\sum _{i=1}^n\frac{\partial V_i^{j-1**}(H,t)}{\partial H}\cdot \frac{(\gamma -1)}{\Delta S}e^{r(t-t_j)} \end{aligned}$$
(28)

for all ith extractor in the \(j-1\)th generation. Equations (27) and (28) represent a system of linear equations in \(\phi _i^{j*}(H,t)\) and \(\phi _i^{j-1**}(H,t)\). The system admits a unique solution:

$$\begin{aligned} \phi _i^{j-1**}(H,t)= & {} \frac{g+k[c_0-c_1H(t)]-k(n+1) \frac{\partial V_i^{j-1**}(H,t)}{\partial H}\cdot \frac{(\gamma -1)}{\Delta S}e^{r(t-t_j)}}{(1+2n)}\nonumber \\&\displaystyle +\frac{nk \frac{\partial V_i^{j*}(H,t)}{\partial H}\cdot \frac{(\gamma -1)}{\Delta S}e^{r(t-t_j)}}{(1+2n)}\end{aligned}$$
(29)
$$\begin{aligned} \phi _i^{j*}(H,t)= & {} \frac{g+k[c_0-c_1H(t)]-k(n+1) \frac{\partial V_i^{j*}(H,t)}{\partial H}\cdot \frac{(\gamma -1)}{\Delta S}e^{r(t-t_j)}}{(1+2n)}\nonumber \\&\displaystyle +\frac{nk\frac{\partial V_i^{j-1**}(H,t)}{\partial H}\cdot \frac{(\gamma -1)}{\Delta S}e^{r(t-t_j)}}{(1+2n)} \end{aligned}$$
(30)

Substituting Eqs. (29) and (30) into HJB given by Eqs. (11) and (12), we obtain the following system of partial differential equations (dropping for notational convenience the (Ht) arguments of the value functions):

$$\begin{aligned} -\frac{\partial V_i^{j*}}{\partial t}= & {} \left[ \frac{-(\gamma -1)^2 n^2e^{r(t-t_j)} k}{(2n+1)^2(\Delta S)^2}\right] \left( \frac{\partial V_i^{j*}}{\partial t}\right) ^2\nonumber \\&+\left\{ \frac{4[(R+g(\gamma -1))n^2+n(\frac{1}{2}g(\gamma -1)+R)+\frac{1}{4}(R+g(\gamma -1))]}{\Delta S(2n+1)^2}\right. \nonumber \\&+\left. \frac{[4(\gamma -1)\Delta S(c_0-c_1H)(n^2+\frac{1}{2}n+\frac{1}{4})-2(\gamma -1)^2n^2e^{r(t-t_j)} \frac{\partial V_i^{j-1**}}{\partial H} ]}{(\Delta S)^2(2n+1)^2}\right\} \nonumber \\&\times \left( \frac{\partial V_i^{j*}}{\partial t}\right) - \frac{\left\{ \left[ (c_0-c_1H)\Delta S+(\gamma -1)e^{r(t-t_j)} n\frac{\partial V_i^{j-1**}}{\partial H}\right] k+\Delta S g\right\} ^2}{(\Delta S)^2(2n+1)^2 k e^{r(t-t_j)}}\end{aligned}$$
(31)
$$\begin{aligned} -\frac{\partial V_i^{j-1**}}{\partial t}= & {} \left[ \frac{-(\gamma -1)^2 n^2e^{r(t-t_j)} k}{(2n+1)^2(\Delta S)^2}\right] \left( \frac{\partial V_i^{j-1**}}{\partial t}\right) ^2\nonumber \\&+\left\{ \frac{4[(R+g(\gamma -1))n^2+n(\frac{1}{2}g(\gamma -1)+R)+\frac{1}{4}(R+g(\gamma -1))]}{\Delta S(2n+1)^2}\right. \nonumber \\&+\left. \frac{[4(\gamma -1)\Delta S(c_0-c_1H)(n^2+\frac{1}{2}n+\frac{1}{4})-2(\gamma -1)^2n^2e^{r(t-t_j)} \frac{\partial V_i^{j-1**}}{\partial H}]}{(\Delta S)^2(2n+1)^2}\right\} \nonumber \\&\times \left( \frac{\partial V_i^{j-1**}}{\partial t}\right) -\frac{\left\{ \left[ (c_0-c_1H)\Delta S+(\gamma -1)e^{r(t-t_j)}n\frac{\partial V_i^{j*}}{\partial H}\right] k+\Delta S g\right\} ^2}{(\Delta S)^2(2n+1)^2 ke^{r(t-t_j)}} \end{aligned}$$
(32)

Rearranging Eqs. (31) and (32), we obtain that:

$$\begin{aligned} -\frac{\partial V_i^{j*}}{\partial t}= & {} e^{-r(t-t_j)} \left( \alpha _1 +\alpha _2 H+\alpha _3H^2\right) +\alpha _4\left( \frac{\partial V_i^{j*}}{\partial H}\right) +\alpha _5 H \left( \frac{\partial V_i^{j*}}{\partial H}\right) \nonumber \\&+\, \alpha _7 \left( \frac{\partial V_i^{j-1**}}{\partial H}\right) +\alpha _{8}H\left( \frac{\partial V_i^{j-1**}}{\partial H}\right) \nonumber \\&\,+\alpha _6e^{r(t-t_j)}\left[ \left( \frac{\partial V_i^{j*}}{\partial H}\right) +\left( \frac{\partial V_i^{j-1**}}{\partial H}\right) \right] ^2 \end{aligned}$$
(33)

and

$$\begin{aligned} -\frac{\partial V_i^{j-1**}}{\partial t}= & {} e^{-r(t-t_j)} \left( \alpha _1 +\alpha _2 H+\alpha _3H^2\right) +\alpha _4\left( \frac{\partial V_i^{j-1**}}{\partial H}\right) +\alpha _5 H \left( \frac{\partial V_i^{j-1**}}{\partial H}\right) \nonumber \\&+ \,\alpha _7 \left( \frac{\partial V_i^{j*}}{\partial H}\right) +\alpha _{8}H\left( \frac{\partial V_i^{j*}}{\partial H}\right) \nonumber \\&+\,\alpha _6e^{r(t-t_j)}\left[ \left( \frac{\partial V_i^{j-1**}}{\partial H}\right) +\left( \frac{\partial V_i^{j*}}{\partial H}\right) \right] ^2 \end{aligned}$$
(34)

where

$$\begin{aligned} \displaystyle \alpha _1= & {} -\frac{(kc_0+g)^2}{k(2n+1)^2}; \quad \displaystyle \alpha _2=\frac{2c_1(c_0k+g)}{(2n+1)^2}; \quad \displaystyle \alpha _3=\frac{-c_1^2k}{(2n+1)^2}; \\ \displaystyle \alpha _4= & {} \frac{[(\gamma -1)(kc_0+g)+R](4n^2+1)+2n[(\gamma -1)(kc_0+g)+2R]}{\Delta S(2n+1)^2};\\ \displaystyle \alpha _5= & {} \frac{-(\gamma -1)(4n^2+2n+1)kc_1}{\Delta S (2n+1)^2};\quad \displaystyle \alpha _6= \frac{-(\gamma -1)^2 n^2 k}{(2n+1)^2(\Delta S)^2};\\ \displaystyle \alpha _7= & {} -\frac{2(\gamma -1)gn}{\Delta S (2n+1)^2};\quad \displaystyle \alpha _{8}=\frac{2(\gamma -1)c_1nk}{\Delta S(2n+1)^2} . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biancardi, M., Maddalena, L. & Villani, G. Groundwater extraction among overlapping generations: a differential game approach. Decisions Econ Finan 43, 539–556 (2020). https://doi.org/10.1007/s10203-020-00292-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10203-020-00292-w

Keywords

JEL Classification

Navigation