Skip to main content
Log in

Do we need a specific kind of technoscience assessment? Taking the convergence of science and technology seriously

  • Focus
  • Published:
Poiesis & Praxis

Abstract

The presented paper addresses the concept of technoscience and its possible implications for technology assessment. Drawing on the discourse about converging technologies, it formulates the assumption that a general shift within science from epistemic cultures to techno-epistemic cultures lies at the heart of the propagated convergence between nano-, bio-, info- and cogno-sciences and technologies. This shift is adequately captured—so the main thesis—by the technoscience label. The paper elaborates on the shared characteristics of the new technosciences, especially their hybrid character and their non-linear integration of basic research, object construction and technological innovation. Recent calls for new modes of technology governance (e.g. for upstream technology assessment and public participation) are discussed against the background of these technoscience characteristics. It is concluded that an adequate model of emerging technosciences and a detailed understanding of their characteristics is of paramount importance for current practices of technology assessment.

Résumé

L’article présenté traite du concept de technoscience et ses implications possibles pour l’évaluation de la technologie. En partant du débat sur les technologies convergentes, il formule l’hypothèse qu’un changement général au sein de la science de cultures épistémiques à des cultures techno-épistémiques se situe au cœur de la convergence propagée entre les nano-, bio-, info- et cogno-sciences et technologies. L’idée centrale est ainsi que le terme technoscience caractérise bien ce changement. L’article vise à spécifier davantage les caractéristiques partagées des nouvelles technosciences, en particulier leur caractère hybride et leur intégration non-linéaire dans la recherche de base, la construction des objets et l’innovation technologique. Des appels récents pour de nouvelles modes de gouvernance de la technologie (exemple: évaluation amont de la technologie et de la participation publique) sont discutés par rapport aux caractéristiques de technoscience. La conclusion tirée montre qu’un modèle pertinent de la technoscience ainsi qu’une compréhension de ses caractéristiques sont de la plus haute importance pour l’évaluation de la technologie.

Zusammenfassung

Brauchen wir eine neue Form der Technikfolgenabschätzung (TA), um gegenwärtig emergierende Technologiefelder zu adressieren? Der vorliegende Artikel versucht sich an einer Bearbeitung dieser Frage, indem er das Konzept der Technowissenschaft aus Perspektive der Wissenschaftstheorie und Wissenschaftsforschung beleuchtet. Insbesondere werden Modelle von Stokes („Pasteurs’ Quadrant”), Oeser (der „epistemo-genetische Zirkel”) und Rheinberger („epistemische Objekte” und „technische Dinge”) herangezogen, um zu einer genaueren Charakterisierung aktueller technowissenschaftlicher Entwicklungen im Bereich der Nano-, Bio-, Informations- und Kognitionsforschung zu gelangen. Auf Basis dieser Charakterisierung—so das zur Diskussion gestellte Resumé des Artikels—ergeben sich wesentliche neue Herausforderungen für den gesellschaftlichen Umgang mit Wissenschaft und Technologie und damit auch neue Themen und Ansatzpunkte für TA. Hierzu zählen der (postulierte) weitreichende und vielgestaltige Wirkhorizont der neuen Technowissenschaften und der damit verbundene Ruf nach einer partizipativen Wissenschafts- und Technologiepolitik, die fehlende Abgrenzung von Grundlagenforschung und Technologieentwicklung und damit verbunden der Ruf nach einem „upstream engagement” sowie die erschwerte Kategorisierung in Natur auf der einen und Kultur auf der anderen Seite und damit verbunden die Auflösung eines wesentlichen Bezugspunktes von Technikbewertung.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The latter has already been criticised as “ELSI-fication” by Williams (2008). He thereby refers to research on Ethical, Legal and Social Implications and warns “that the very idea of conducting prior ELSI assessments, by conveying the premise that one can somehow read off the diverse future implications at these earliest stages of a new technology, may encourage a linear reading of technology development pathways and outcomes. … It is therefore unhelpful that much ELSI work may be somewhat divorced from the body of insights into innovation processes available from STS” (Williams 2008:274).

  2. All of which could be denoted as “informal TA” (Rip 1986).

  3. This includes the interesting discussion whether technoscience constitutes a new phenomenon, characterising specific emerging sciences and technologies, whether it constitutes a trait present in all experimental sciences or a trait present in all sciences and technologies since the age of enlightenment. This discussion is not further elaborated on here because it is not essential for discussing a TA of technoscience and an in depth discussion seems only feasible when taking the societal level (2) into account.

  4. Within the philosophy of technology, of course much more sophisticated definitions of technology exist. In this paper, the focus is far more on the process of technological innovation throughout research processes rather than on technology per se. Hence, these—in general terms much too crude—differentiations.

  5. In this respect, the relation between technological devices and scientific research differs from other cases of technology-dependent research, for example the discovery of cell structures with the help of the newly developed microscope.

  6. Rheinberger also says something about the source of epistemic things. They “usually begin their lives as recalcitrant ‘noise’, as boundary phenomena, before they move on stage as ‘significant units’”. (Rheinberger 1997:21) In other words, before being focused on as scientific objects, they raise attention by hindering the controlled functioning of technical objects. They then pass a stage of epistemic interest, before they become part of the technical dimension of experimentation.

  7. This techno-epistemic model brings another tripartite model to mind: the triple helix model of university–industry–government put forward by Etzkowitz and Leydesdorff (1997). While the former concentrates on research at the micro-level, the latter focuses on the meso- and macro-level of institutions and actors.

  8. Drawing on von Wright (1974), Hoyningen-Huene discerns an internal and an external aspect of an operation or action. The internal aspect comprises the purpose of the action and a specific appraisal of a situation. The external aspect comprises the physical dimension of an action, i.e. the muscular activity and its known and intended impact (ibid.: 51).

  9. Reactions to a displaced future are found in the approaches of anticipatory governance, to a displaced politics by participatory TA, to a displaced culturality by ethics committees.

  10. Of course, reference to mechanistic concepts or “scientisation” allude to “displaced technology” and “displaced science”.

  11. Cf. also the request for a science assessment by Gill (1994).

References

  • Aebersold R, Hood LE, Watts JD (2000) Equipping scientists for the new biology. Nat Biotech 18:359, 10.1038/74325

    Article  Google Scholar 

  • Beckert B, Blümel C, Friedewald M (2007) Visions and realities in converging technologies: exploring the technology base for convergence. Innov Eur J Soc Sci 20(4):375–394, 10.1080/13511610701767932

    Article  Google Scholar 

  • Bush V (1945) Science: the endless frontier. A report to the President on a program for postwar scientific research by Vannevar Bush, Director of the office of scientific research and development, July 1945. United States Government Printing Office, Washington, DC

    Google Scholar 

  • Coenen C (2008) Konvergierende Technologien und Wissenschaften. Der Stand der Debatte und politischen Aktivitäten zu “Converging Technologies”. TAB—Büro für Technikfolgen-Abschätzung beim Deutschen Bundestag, Berlin

  • Dupuy J-P (2007) Some pitfalls in the philosophical foundations of nanoethics. J Med Philosophy 32:237–261, 10.1080/03605310701396992

    Article  Google Scholar 

  • Etzkowitz H, Leydesdorff L (eds) (1997) Universities and the global knowledge economy. A triple helix of university-industry-government relations. Pinter, London

    Google Scholar 

  • Fiedeler U (2008) Technology assessment of nanotechnology: problems and methods in assessing emerging technologies. In: Fisher E, Selin C, Wetmore J (eds) Excavating futures of nanotechnology. The yearbook of nanotechnology in society. Springer, New York, pp 241–263

    Google Scholar 

  • Forman P (2007) The primacy of science in modernity, of technology in postmodernity, and of ideology in the history of technology. Hist Technol 23(1/2):1–152, 10.1080/07341510601092191

    Article  Google Scholar 

  • Gill B (1994) Die Vorverlegung der Folgenerkenntnis Science Assessment als Selbstreflexion der Wissenschaft. Soziale Welt 45(4):430–454

    Google Scholar 

  • Grunwald A (2007) Converging technologies: visions, increased contingencies of the conditio humana, and search for orientation. Futures 39(4):380–392, 10.1016/j.futures.2006.08.001

    Article  Google Scholar 

  • Hacking I (1983) Representing and intervening. Cambridge University Press, New York

    Book  Google Scholar 

  • Haraway DJ (1997) Modest_Witness@Second_Millenium. FemaleMan(c)_Meets_OncoMouse(TM). Routledge, New York

    Google Scholar 

  • Hoyningen-Huene P (1989) Naturbegriff–Wissensideal–Experiment. Warum ist die neuzeitliche Naturwissenschaft technisch verwertbar? Z Wissenschaftsforschung 5:43–55

    Google Scholar 

  • Jacob F (1988) The statue within. An Autobiography. Basic Books, New York

    Google Scholar 

  • Kastenhofer K (2007) Converging epistemic cultures? A discussion drawing on empirical findings. Innov Eur J Soc Sci Res 20(4):359–373, 10.1080/13511610701767908

    Article  Google Scholar 

  • Knorr Cetina K (1999) Epistemic cultures: how the sciences make knowledge. Harvard University Press, Cambridge

    Google Scholar 

  • Lacey H (2005) Values and objectivity in science. Lexington Books, Lanham

    Google Scholar 

  • Latour B (1983) Give me a laboratory and I raise the world. In: Knorr-Cetina K, Mulkay M (eds) Science observed-perspectives on the social studies of science. SAGE, London, pp 141–170

    Google Scholar 

  • Latour B (1987) Science in action. How to follow scientists and engineers through society. Harvard University Press, Cambridge

    Google Scholar 

  • Lösch A (2009) Visual dynamics: the defuturization of the popular “nano-discourse” as an effect of increasing economization. In: Kaiser M, Kurath M, Maasen S, Rehmann-Sutter C (eds) Governing future technologies. Nanotechnology and the rise of an assessment regime. Springer, New York, pp 89–108

    Chapter  Google Scholar 

  • Nahuis R, van Lente H (2008) Where are the politics? Perspectives on democracy and technology. Sci Technol Human Values 33(5):559–581, 10.1177/0162243907306700

    Article  Google Scholar 

  • Nordmann A (2004) Was ist TechnoWissenschaft?–Zum Wandel der Wissenschaftskultur am Beispiel von Nanoforschung und Bionik. In: Rossmann T, Tropea C (eds) Bionik: Aktuelle Forschungsergebnisse in Natur-, Ingenieur- und Geisteswissenschaften. Springer, Berlin, pp 209–218

    Google Scholar 

  • Nordmann A (2006) Collapse of distance: epistemic strategies of science and technoscience. Dan Yearb Philosophy 41:7–34

    Google Scholar 

  • Oeser E (1988) Das Abenteuer kollektiver Vernunft: Evolution und Involution der Wissenschaft. Parey, Berlin

    Google Scholar 

  • Oeser E (2004) The evolution of scientific method. In: Wuketits FM, Antweiler C (eds) Handbook of evolution, vol 1: the evolution of human societies and cultures. Wiley, Weinheim, pp 149–184

    Google Scholar 

  • Pickering A (ed) (1992) Science as practice and culture. University of Chicago Press, Chicago

    Google Scholar 

  • Price DdS (1963) Little science, big science. Columbia University Press, New York

    Google Scholar 

  • Rheinberger H-J (1997) Toward a history of epistemic things. Synthesizing proteins in the test tube. Stanford University Press, Stanford

    Google Scholar 

  • Rip A (1986) Controversies as informal technology assessment. Knowledge: Creation, Diffusion, Utilization 8(2):349–371

  • Rip A (2006) Folk theories of nanotechnologists. Sci Cult 15(4):349–365, 10.1080/09505430601022676

    Article  Google Scholar 

  • Rip A, Voß J-P (2009) Umbrella terms in the governance of emerging science and technology: bridging the tension between relevance and scientific advance. Paper presented at: Governance von Zukunftstechnologien, Tagung des AK “Politik und Technik” der Deutschen Vereinigung für Politische Wissenschaft (22.5.2009), Technische Universität Berlin

  • Roco MC, Bainbridge WS (eds) (2001) Societal implications of nanoscience and nanotechnology. NSET Workshop Report. National Science Foundation, Arlington

    Google Scholar 

  • Roco MC, Bainbridge WS (eds) (2002) Converging technologies for improving human performance. Nanotechnology, biotechnology, information technology and cognitive science. NSF/DOC-sponsored report. National Science Foundation, Arlington

    Google Scholar 

  • Saretzki T (1999) TA als diskursiver Prozeß. In: Bröchler S, Simonis G, Sundermann K (eds) Handbuch Technikfolgenabschätzung. Sigma, Berlin, pp 641–653

    Google Scholar 

  • Schummer J (2006) Cultural diversity in nanotechnology ethics. Interdiscip Sci Rev 31(3):217–230, 10.1179/030801806X113757

    Article  Google Scholar 

  • Schummer J (2009) From nano-convergence to NBIC-convergence: “the best way to predict the future is to create it”. In: Kaiser M, Kurath M, Maasen S, Rehmann-Sutter C (eds) Governing future technologies. Nanotechnology and the rise of an assessment regime. Springer, New York, pp 57–71

    Chapter  Google Scholar 

  • Selin C (2007) Expectations and the emergence of nanotechnology. Sci Technol Human Values 32(2):196–220, 10.1177/0162243906296918

    Article  Google Scholar 

  • Shiva V (1993) Monocultures of the mind. Perspectives on biodiversity and biotechnology. Zed Books, London

    Google Scholar 

  • Stokes DE (1997) Pasteur’s quadrant. basic science and technological innovation. Brookings Institution Press, Washington/DC

    Google Scholar 

  • Torgersen H (2009) Fuzzy genes: epistemic tensions in genomics. Sci Cult 18(1):65–87, 10.1080/09505430802603829

    Article  Google Scholar 

  • Weber J (2006) From science and technology to feminist technoscience. In: Davis K, Evans M, Lorber J (eds) Handbook of gender and women’s studies. SAGE, London, pp 397–414

    Chapter  Google Scholar 

  • Williams R (2008) Compressed foresight and narrative bias: pitfalls in assessing high technology futures. In: Fisher E, Selin C, Wetmore J (eds) Excavating futures of nanotechnology. The yearbook of nanotechnology in society. Springer, New York, pp 265–289

    Google Scholar 

  • Wright GH (1974) Erklären und Verstehen. Athenäum, Frankfurt

    Google Scholar 

  • Wullweber J (2008) Nanotechnology—an empty Signifier à venir? A delineation of a techno-socio-economical innovation strategy. Sci Technol Innov Stud 4(1):27–45

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen Kastenhofer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kastenhofer, K. Do we need a specific kind of technoscience assessment? Taking the convergence of science and technology seriously. Poiesis Prax 7, 37–54 (2010). https://doi.org/10.1007/s10202-010-0077-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10202-010-0077-3

Keywords

Navigation