Skip to main content

Advertisement

Log in

Intraoperative neurophysiological monitoring during spinal surgery: technical review in open and minimally invasive approaches

  • Review
  • Published:
Neurosurgical Review Aims and scope Submit manuscript

Abstract

Neurophysiological monitoring is of undoubted value for the intraoperative safety of neurosurgical procedures. Widely developed and used for cranial surgery, it is equally as effective, though perhaps less commonly employed, for spinal pathology. The most frequently used techniques for intraoperative monitoring during spinal surgery include somatosensory evoked potentials (SSEPs), motor evoked potentials (MEPs) and electromyography, which can either be spontaneous free-running (sEMG) or triggered (tEMG). The knowledge of the benefits and limitations of each modality is essential in optimising the value of intraoperative monitoring during spinal procedures. This review will analyse the single techniques, their anatomical and physiological basis, their use in spinal surgery as reliable indicators of functional injury, their limits and their application to specific procedures in minimally invasive surgery, such as the lateral transpsoas access for interbody fusion and the divergent trajectory for cortico-pedicular screws. In these particular techniques, because of reduced visual exposure, neuromonitoring is indeed essential to exploit the full potential of minimally invasive surgery, while avoiding damage to nervous structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Anderson DG, Wierzbowski LR, Schwartz DM, Hilibrand AS, Vaccaro AR, Albert TJ (2002) Pedicle screws with high electrical resistance: a potential source of error with stimulus-evoked EMG. Spine (Phila Pa 1976) 27(14):1577–1581. https://doi.org/10.1097/00007632-200207150-00018

    Article  Google Scholar 

  2. Banagan K, Gelb D, Poelstra K, Ludwig S (2011) Anatomic mapping of lumbar nerve roots during a direct lateral transpsoas approach to the spine: a cadaveric study. Spine 36(11):E687–E691

    Article  PubMed  Google Scholar 

  3. Benglis DM, Vanni S, Levi AD (2009) An anatomical study of the lumbosacral plexus as related to the minimally invasive transpsoas approach to the lumbar spine. J Neurosurg Spine 10:139–144

    Article  PubMed  Google Scholar 

  4. Bergey DL, Villavicencio AT, Goldstein T, Regan JJ (2004) Endoscopic lateral transpsoas approach to the lumbar spine. Spine 29(15):1681–1688. https://doi.org/10.1097/01.BRS.0000133643.75795.EF

    Article  PubMed  Google Scholar 

  5. Bigelow DC, Patterson T, Weber R, Stecker MM, Judy K (2002) Comparison of endotracheal tube and hookwire electrodes for monitoring the vagus nerve. J Clin Monit Comput 17(3/4):217–220. https://doi.org/10.1023/A:1020729832385

    Article  PubMed  Google Scholar 

  6. Block J, Silverstein JW, Ball HT, Mermelstein LE, DeWal HS, Madhok R, Basra SK, Goldstein MJ (2015) Motor evoked potentials for femoral nerve protection in transpsoas lateral access surgery of the spine. Neurodiagn J 55(1):36–45. https://doi.org/10.1080/21646821.2015.1012456

    Article  PubMed  Google Scholar 

  7. Bose B, Sestokas AK, Schwartz DM (2007) Neurophysiological detection of iatrogenic C-5 nerve deficit during anterior cervical spinal surgery. J Neurosurg Spine 6(5):381–385. https://doi.org/10.3171/spi.2007.6.5.381

    Article  PubMed  Google Scholar 

  8. Calancie B, Molano MR (2008) Alarm criteria for motor-evoked potentials: what’s wrong with the “presence-or-absence” approach? Spine 33(4):406–414. https://doi.org/10.1097/BRS.0b013e3181642a2f

    Article  PubMed  Google Scholar 

  9. Calancie B, Madsen P, Lebwohl N (1994) Stimulus-evoked EMG monitoring during transpedicular lumbosacral spine instrumentation. Initial clinical results. Spine 19(24):2780–2786

    Article  CAS  PubMed  Google Scholar 

  10. Calancie B, Harris W, Broton JG, Alexeeva N, Green BA (1998) “Threshold-level” multipulse transcranial electrical stimulation of motor cortex for intraoperative monitoring of spinal motor tracts: description of method and comparison to somatosensory evoked potential monitoring. J Neurosurg 88(3):457–470. https://doi.org/10.3171/jns.1998.88.3.0457

    Article  CAS  PubMed  Google Scholar 

  11. Chiappa K, Hill R (1997) Short latency somatosensory evoked potentials: methodology. In: Chiappa K (ed) Evoked potentials in clinical medicine. Lippincott-Raven, Philadelphia

    Google Scholar 

  12. Costa P, Bruno A, Bonzanino M, Massaro F, Caruso L, Vincenzo I, Ciaramitaro P, Montalenti E (2007) Somatosensory- and motor-evoked potential monitoring during spine and spinal cord surgery. Spinal Cord 45(1):86–91. https://doi.org/10.1038/sj.sc.3101934

    Article  CAS  PubMed  Google Scholar 

  13. Dakwar E, Vale FL, Uribe JS (2011) Trajectory of the main sensory and motor branches of the lumbar plexus outside the psoas muscle related to the lateral retroperitoneal transpsoas approach. J Neurosurg Spine 14(2):290–295. https://doi.org/10.3171/2010.10.SPINE10395

    Article  PubMed  Google Scholar 

  14. Deletis V, Sala F (2008) Intraoperative neurophysiological monitoring of the spinal cord during spinal cord and spine surgery: a review focus on the corticospinal tracts. Clin Neurophysiol 119(2):248–264. https://doi.org/10.1016/j.clinph.2007.09.135

    Article  Google Scholar 

  15. Deletis V, Isgum V, Amassian VE (2001) Neurophysiological mechanisms underlying motor evoked potentials in anesthetized humans. Part 1. Recovery time of corticospinal tract direct waves elicited by pairs of transcranial electrical stimuli. Clin Neurophysiol 112(3):438–444. https://doi.org/10.1016/S1388-2457(01)00461-8

    Article  CAS  PubMed  Google Scholar 

  16. Fan D, Schwartz DM, Vaccaro AR, Hilibrand AS, Albert TJ (2002) Intraoperative neurophysiologic detection of iatrogenic C5 nerve root injury during laminectomy for cervical compression myelopathy. Spine (Phila Pa 1976) 27(22):2499–2502. https://doi.org/10.1097/01.BRS.0000031313.90883.29

    Article  Google Scholar 

  17. Gandhi R, Curtis CM, Cohen-Gadol AA (2015) High-resolution direct microstimulation mapping of spinal cord motor pathways during resection of an intramedullary tumor. J Neurosurg Spine 22(2):205–210. https://doi.org/10.3171/2014.10.SPINE1474

    Article  PubMed  Google Scholar 

  18. Gunnarsson T, Krassioukov AV, Sarjeant R, Fehlings MG (2004) Real-time continuous intraoperative electromyographic and somatosensory evoked potential recordings in spinal surgery: correlation of clinical and electrophysiologic findings in a prospective, consecutive series of 213 cases. Spine (Phila Pa 1976) 29(6):677–684. https://doi.org/10.1097/01.BRS.0000115144.30607.E9

    Article  Google Scholar 

  19. Hadley MN, Shank CD, Rozzelle CJ, Walters BC (2017) Guidelines for the use of electrophysiological monitoring for surgery of the human spinal column and spinal cord. Neurosurgery 81(5):713–732. https://doi.org/10.1093/neuros/nyx466

    Article  Google Scholar 

  20. Holland NR, Lukaczyk TA, Riley LH 3rd, Kostuik JP (1998) Higher electrical stimulus intensities are required to activate chronically compressed nerve roots. Implications for intraoperative electromyographic pedicle screw testing. Spine (Phila Pa 1976) 23(2):224–227. https://doi.org/10.1097/00007632-199801150-00014

    Article  CAS  Google Scholar 

  21. Jimenez JC, Sani S, Braverman B, Deutsch H, Ratliff JK (2005) Palsies of the fifth cervical nerve root after cervical decompression: prevention using continuous intraoperative electromyography monitoring. J Neurosurg Spine 3(2):92–97. https://doi.org/10.3171/spi.2005.3.2.0092

    Article  PubMed  Google Scholar 

  22. Kalkman CJ, Drummond JC, Kennelly NA, Patel PM, Partridge BL Intraoperative monitoring of tibialis anterior muscle motor evoked responses to transcranial electrical stimulation during partial neuromuscular blockade. Anesth Analg 75:584–589

  23. Khan A, Pearlman RC, Bianchi DA, Hauck KW (1997) Experience with two types of electromyography monitoring electrodes during thyroid surgery. Am J Otolaryngol 18(2):99–102. https://doi.org/10.1016/S0196-0709(97)90095-8

    Article  CAS  PubMed  Google Scholar 

  24. Kothbauer KF (2007) Intraoperative neurophysiologic monitoring for intramedullary spinal-cord tumor surgery. Neurophysiol Clin 37(6):407–414. https://doi.org/10.1016/j.neucli.2007.10.003

    Article  CAS  Google Scholar 

  25. Kothbaurer K (2002) Motor evoked potential monitoring for intramedullary spinal cord surgery. In: Deletis V, Shils J (eds) Neurophysiology in neurosurgery. Academic Press, San Diego, pp 73–92. https://doi.org/10.1016/B978-012209036-3/50006-8

    Chapter  Google Scholar 

  26. Lall RR, Lall RR, Hauptman JS, Munoz C, Cybulski GR, Koski T, Ganju A, Fessler RG, Smith ZA (2012) Intraoperative neurophysiological monitoring in spine surgery: indications, efficacy, and role of the preoperative checklist. Neurosurg Focus 33(5):E10. https://doi.org/10.3171/2012.9.FOCUS12235

    Article  PubMed  Google Scholar 

  27. Langeloo DD, Lelivelt A, Louis Journee H, Slappendel R, de Kleuver M (2003) Transcranial electrical motor-evoked potential monitoring during surgery for spinal deformity: a study of 145 patients. Spine 28(10):1043–1050. https://doi.org/10.1097/01.BRS.0000061995.75709.78

    Article  Google Scholar 

  28. Lenke LG, Padberg AM, Russo MH, Bridwell KH, Gelb DE (1995) Triggered electromyographic threshold for accuracy of pedicle screw placement. An animal model and clinical correlation. Spine (Phila Pa 1976) 20(14):1585–1591

    Article  CAS  Google Scholar 

  29. Loder RT, Thomson GJ, LaMont RL (1991) Spinal cord monitoring in patients with nonidiopathic spinal deformities using somatosensory evoked potentials. Spine (Phila Pa 1976) 16(12):1359–1364. https://doi.org/10.1097/00007632-199112000-00003

    Article  CAS  Google Scholar 

  30. Matsukawa K, Yato Y, Imabayashi H, Hosogane N, Asazuma T, Chiba K (2015) Biomechanical evaluation of the fixation strength of lumbar pedicle screws using cortical bone trajectory: a finite element study. J Neurosurg Spine 23(4):471–478. https://doi.org/10.3171/2015.1.SPINE141103

    Article  PubMed  Google Scholar 

  31. McAfee PC, Regan JJ, Geis WP, Fedder IL (1998) Minimally invasive anterior retroperitoneal approach to the lumbar spine. Emphasis on the lateral BAK. Spine 23(13):1476–1484. https://doi.org/10.1097/00007632-199807010-00009

    Article  CAS  PubMed  Google Scholar 

  32. Merton PA, Morton HB (1980) Stimulation of the cerebral cortex in the intact human subject. Nature 285(5762):227. https://doi.org/10.1038/285227a0

    Article  CAS  Google Scholar 

  33. Minahan RE, Riley LH 3rd, Lukaczyk T, Cohen DB, Kostuik JP (2000) The effect of neuromuscular blockade on pedicle screw stimulation thresholds. Spine (Phila Pa 1976) 25(19):2526–2530. https://doi.org/10.1097/00007632-200010010-00016

    Article  CAS  Google Scholar 

  34. Moro T, Kikuchi S, Konno S, Yaginuma H (2003) An anatomic study of the lumbar plexus with respect to retroperitoneal endoscopic surgery. Spine 28:423–428

    PubMed  Google Scholar 

  35. Morota N, Deletis V, Constatini S, Kofler M, Cohen H, Epstein FJ (1997) The role of motor evoked potentials during surgery for intramedullary spinal cord tumors. Neurosurgery 41(6):1327–1336. https://doi.org/10.1097/00006123-199712000-00017

    Article  CAS  PubMed  Google Scholar 

  36. Nash CL Jr, Lorig RA, Schatzinger LA, Brown RH (1977) Spinal cord monitoring during operative treatment of the spine. Clin Orthop Relat Res 100–105

  37. Nuwer MR, Dawson EG, Carlson LG, Kanim LE, Sherman JE (1995) Somatosensory evoked potential spinal cord monitoring reduces neurologic deficits after scoliosis surgery: results of a large multicenter survey. Electroencephalogr Clin Neurophysiol 96(1):6–11. https://doi.org/10.1016/0013-4694(94)00235-D

    Article  CAS  Google Scholar 

  38. Obi T, Mochizuki M, Isobe K, Mizoguchi K, Takatsu M, Nishimura Y (1999) Mechanically elicited nerve root discharge: mechanical irritation and waveform. Acta Neurol Scand 100(3):185–188

    Article  CAS  PubMed  Google Scholar 

  39. Park DK, Lee MJ, Lin EL, Singh K, An HS, Phillips FM (2010) The relationship of intrapsoas nerves during a transpsoas approach to the lumbar spine: anatomic study. J Spinal Disord Tech 23:223–228

    Article  Google Scholar 

  40. Parker SL, Amin AG, Farber SH, McGirt MJ, Sciubba DM, Wolinsky JP, Bydon A, Gokaslan ZL, Witham TF (2011) Ability of electromyographic monitoring to determine the presence of malpositioned pedicle screws in the lumbosacral spine: analysis of 2450 consecutively placed screws. Clinical article. J Neurosurg Spine 15(2):130–135. https://doi.org/10.3171/2011.3.SPINE101

    Article  Google Scholar 

  41. Quinones-Hinojosa A, Lyon R, Zada G, Lamborn KR, Gupta N, Parsa AT et al (2005) Changes in transcranial motor evoked potentials during intramedullary spinal cord tumor resection correlate with postoperative motor function. Neurosurgery 56:982–993

    PubMed  Google Scholar 

  42. Quraishi NA, Lewis SJ, Kelleher MO, Sarjeant R, Rampersaud YR, Fehlings MG (2009) Intraoperative multimodality monitoring in adult spinal deformity: analysis of a prospective series of one hundred two cases with independent evaluation. Spine (Phila Pa 1976) 34(14):1504–1512. https://doi.org/10.1097/BRS.0b013e3181a87b66

    Article  Google Scholar 

  43. Raynor BL, Lenke LG, Kim Y, Hanson DS, Wilson-Holden TJ, Bridwell KH, Padberg AM (2002) Can triggered electromyograph thresholds predict safe thoracic pedicle screw placement? Spine (Phila Pa 1976) 27(18):2030–2035. https://doi.org/10.1097/00007632-200209150-00012

    Article  Google Scholar 

  44. Raynor BL, Lenke LG, Bridwell KH, Taylor BA, Padberg AM (2007) Correlation between low triggered electromyographic thresholds and lumbar pedicle screw malposition: analysis of 4857 screws. Spine (Phila Pa 1976) 32(24):2673–2678. https://doi.org/10.1097/BRS.0b013e31815a524f

    Article  Google Scholar 

  45. Regev GJ, Chen L, Dhawan M, Lee YP, Garfin SR, Kim CW (2009) Morphometric analysis of the ventral nerve roots and retroperitoneal vessels with respect to the minimally invasive lateral approach in normal and deformed spines. Spine 34:1330–1335

    Article  Google Scholar 

  46. Rodgers WB, Gerber EJ, Patterson J (2011) Intraoperative and early postoperative complications in extreme lateral interbody fusion: an analysis of 600 cases. Spine 36(1):26–32. https://doi.org/10.1097/BRS.0b013e3181e1040a

    Article  PubMed  Google Scholar 

  47. Romstock J, Strauss C, Fahlbusch R (2000) Continuous electromyography monitoring of motor cranial nerves during cerebellopontine angle surgery. J Neurosurg 93(4):586–593. https://doi.org/10.3171/jns.2000.93.4.0586

    Article  CAS  PubMed  Google Scholar 

  48. Sala F, Palandri G, Basso E, Lanteri P, Deletis V, Faccioli F, Bricolo A (2006) Motor evoked potential monitoring improves outcome after surgery for intramedullary spinal cord tumors: a historical control study. Neurosurgery 58(6):1129–1143. https://doi.org/10.1227/01.NEU.0000215948.97195.58

    Article  Google Scholar 

  49. Santoni BG, Hynes RA, McGilvray KC, Rodriguez-Canessa G, Lyons AS, Henson MA et al (2009) Cortical bone trajectory for lumbar pedicle screws. Spine J 9(5):366–373. https://doi.org/10.1016/j.spinee.2008.07.008

  50. Sherrington C (1906) The integrative action of the nervous system. Yale University Press, New Haven

    Google Scholar 

  51. Silverstein J, Mermelstein L, DeWal H, Basra S (2014) Saphenous nerve somatosensory evoked potentials: a novel technique to monitor the femoral nerve during transpsoas lumbar laterale interbody fusion. Spine (Phila Pa 1976) 39(15):1254–1260. https://doi.org/10.1097/BRS.0000000000000357

  52. Skinner S, Sala F (2017) Communication and collaboration in spine neuromonitoring: time to expect more, a lot more, from the neurophysiologists. J Neurosurg Spine 27(1):1–6. https://doi.org/10.3171/2016.12.SPINE161212

    Article  PubMed  Google Scholar 

  53. Skinner S, Holdefer R, McAuliffe JJ, Sala F (2017) Medical error avoidance in intraoperative neurophysiological monitoring: the communication imperative. J Clin Neurophysiol 34(6):477–483. https://doi.org/10.1097/WNP.0000000000000419

    Article  PubMed  Google Scholar 

  54. Sloan T (2002) Anesthesia and motor evoked potential monitoring. In: Deletis V, Shils J (eds) Neurophysiology in neurosurgery, San Diego, Academic Press, pp 452–474. https://doi.org/10.1016/B978-012209036-3/50019-6

  55. Stecker MM A review of intraoperative monitoring for spinal surgery. Surg. Neurol Int 2012; 3(Suppl 3): S174–S187

  56. Stecker MM, Robertshaw J (2006) Factors affecting reliability of interpretations of intra-operative evoked potentials. J Clin Monit Comput 20(1):47–55. https://doi.org/10.1007/s10877-005-9006-8

    Article  PubMed  Google Scholar 

  57. Stecker MM, Baylor K, Wolfe J, Stevenson M (2011) Acute nerve stretch and the compound motor action potential. J Brachial Plex Peripher Nerve Inj 6:4

    PubMed  PubMed Central  Google Scholar 

  58. Toleikis RJ (2002) Neurophysiological monitoring during pedicle screw placement. In: Deletis V, Shils J (eds) Neurophysiology in neurosurgery. Academic Press, San Diego, pp 231–264. https://doi.org/10.1016/B978-012209036-3/50013-5

    Chapter  Google Scholar 

  59. Toleikis JR (2005) American Society of Neurophysiological Monitoring. Intraoperative monitoring using somatosensory evoked potentials. A position statement by the American Society of Neurophysiological Monitoring. J Clin Monit Comput 19(3):241–258. https://doi.org/10.1007/s10877-005-4397-0

    Article  PubMed  Google Scholar 

  60. Ulkatan S, Neuwirth M, Bitan F, Minardi C, Kokoszka A, Deletis V (2006) Monitoring of scoliosis surgery with epidurally recorded motor evoked potentials (D wave) revealed false results. Clin Neurophysiol 117(9):2093–2101. https://doi.org/10.1016/j.clinph.2006.05.021

    Article  CAS  PubMed  Google Scholar 

  61. Uribe JS, Arredondo N, Dakwar E, Vale FL (2010) Defining the safe working zones using the minimally invasive lateral retroperitoneal transpsoas approach: an anatomical study. J Neurosurg Spine 13:260–266

    Article  PubMed  Google Scholar 

  62. Yen CP, Mosley YI, Uribe JS (2016) Role of minimally-invasive surgery for adult spinal deformity in preventing complications. Curr Rev Musculoskelet Med 9(3):309–315. https://doi.org/10.1007/s12178-016-9355-6

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Cofano.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors. Informed consent was obtained from all individual participants included in this study.

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cofano, F., Zenga, F., Mammi, M. et al. Intraoperative neurophysiological monitoring during spinal surgery: technical review in open and minimally invasive approaches. Neurosurg Rev 42, 297–307 (2019). https://doi.org/10.1007/s10143-017-0939-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10143-017-0939-4

Keywords

Navigation