Skip to main content

Advertisement

Log in

Homeorhetic adaptation to lactation: comparative transcriptome analysis of mammary, liver, and adipose tissue during the transition from pregnancy to lactation in rats

  • Short Communication
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Tissue-specific shifts in a dam’s metabolism to support fetal and neonatal growth during pregnancy and lactation are controlled by differential expression of regulatory genes. The goal of this study was to identify a more detailed cohort of genes in mammary, liver, and adipose tissue that are transcriptionally controlled during the pregnancy to lactation evolution and explore the relationship of these genes to core clock genes. Total RNA was isolated from mammary, liver and adipose tissues collected from rat dams on day 20 of pregnancy (P20) and day 1 of lactation (L1) and gene expression was measured using Rat 230 2.0 Affymetrix GeneChips. Gene functional analysis revealed that pathway associated metabolism (carbohydrate, amino acid, lipid, cholesterol, protein) were enriched (P < 0.001) in the mammary gland during P20 to L1 transition. Approximately 50% of the genes associated with solute transport, as well as lipogenesis were up-regulated in the mammary gland during P20 to L1 transition compared to 10% in liver and 15% in adipose tissue. Genes engaged in conveying glucose (INSR, GLUT1, GLUT4, SGLT1, and SGLT2), bicarbonate (SLC4), sodium (SLC9), zinc (SLC30), copper (SLC31), iron (SLC40) in tandem with rate-limiting lipogenic genes (ACACA, FASN, PRLR, SREBP2, THRSP) were specifically enriched in the mammary gland during the P20 to L1 evolution. Our results provide insight into a cross-tissue transcriptional repertoire that is associated with homeorhetic adaptation needed to support lactation, and at the onset of lactation the mammary gland becomes a factory for macromolecular biosynthesis through inducing genes participating in nutrient transfer and lipid biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Akers RM (2006) Major advances associated with hormone and growth factor regulation of mammary growth and lactation in dairy cows. J Dairy Sci 89:1222–1234

    Article  PubMed  CAS  Google Scholar 

  • Anderson S, Rudolph M, McManaman J, Neville M (2007) Secretory activation in the mammary gland: it’s not just about milk protein synthesis! Breast Cancer Res 9:204–217

    Article  PubMed  Google Scholar 

  • Ardeshirpour L, Dann P, Pollak M, Wysolmerski J, VanHouten J (2006) The calcium-sensing receptor regulates PTHrP production and calcium transport in the lactating mammary gland. Bone 38:787–793

    Article  PubMed  CAS  Google Scholar 

  • Augustine RA, Ladyman SR, Grattan DR (2008) From feeding one to feeding many: hormone-induced changes in bodyweight homeostasis during pregnancy. J Physiol 586:387–397. doi:10.1113/jphysiol.2007.146316

    Article  PubMed  CAS  Google Scholar 

  • Auldist MJ, Turner SA, McMahon CD, Prosser CG (2007) Effects of melatonin on the yield and composition of milk from grazing dairy cows in New Zealand. J Dairy Res 74:52–57

    Article  PubMed  CAS  Google Scholar 

  • Barber MC, Clegg RA, Finley E, Vernon RG, Flint DJ (1992) The role of growth hormone, prolactin and insulin-like growth factors in the regulation of rat mammary gland and adipose tissue metabolism during lactation. J Endocrinol 135:195–202

    Article  PubMed  CAS  Google Scholar 

  • Barber MC, Clegg RA, Travers MT, Vernon RG (1997a) Lipid metabolism in the lactating mammary gland. Biochim Biophys Acta L, Lipids lipid Metab 1347:101–126

    Article  CAS  Google Scholar 

  • Barber MC, Clegg RA, Travers MT, Vernon RG (1997b) Lipid metabolism in the lactating mammary gland. Biochim Biophys Acta 1347:101–126

    PubMed  CAS  Google Scholar 

  • Bauman DE, Currie WB (1980) Partitioning of nutrients during pregnancy and lactation: a review of mechanisms involving homeostasis and homeorhesis. J Dairy Sci 63:1514–1529

    Article  PubMed  CAS  Google Scholar 

  • Bauman DE, Elliot JM, Mepham TB (1983) Control of nutrient partitioning in lactating ruminantsBiochemistry of lactation. Elsevier, New York, pp 437–468

    Google Scholar 

  • Bauman DE, Dunshea FR, Boisclair YR, McGuire MA, Harris DM, Houseknecht KL (1989) Regulation of nutrient partitioning: homeostasis, homeorhesis and exogenous somatotropin. Production Disease in Farm Animals 7th Int. Conf. pp. 1–19

  • Bauman DE, Mather IH, Wall RJ, Lock AL (2006) Major advances associated with the biosynthesis of milk. J Dairy Sci 89:1235–1243

    Article  PubMed  CAS  Google Scholar 

  • Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19:185–193

    Article  PubMed  CAS  Google Scholar 

  • Brewer M, Lange D, Baler R, Anzulovich A (2005) SREBP-1 as a transcriptional integrator of circadian and nutritional cues in the liver. J Biol Rhythms 20:195–205. doi:10.1177/0748730405275952

    Article  PubMed  CAS  Google Scholar 

  • Burnol A, Leturque A, Loizeau M, Postic C, Girard J (1990a) Glucose transporter expression in rat mammary gland. Biochem J 270:277–279

    PubMed  CAS  Google Scholar 

  • Burnol AF, Loizeau M, Girard J (1990b) Insulin receptor activity and insulin sensitivity in mammary gland of lactating rats. Am J Physiol Endocrinol Metab 259:828–834

    Google Scholar 

  • Casey T, Patel O, Dykema K, Dover H, Furge K, Plaut K (2009) Molecular signatures reveal the homeorhetic response to lactation may be orchestrated by circadian clocks PLoS One 4(10):e7395. Available at: http://dx.plos.org/10.1371/journal.pone.0007395

  • Chmurzynska A (2006) The multigenic family of the fatty acid binding protein (FABP): function, structure and polymorphism. J Appl Genet 47:39–48

    Article  PubMed  Google Scholar 

  • Cohen AW, Combs TP, Scherer PE, Lisanti MP (2003) Role of caveolin and caveolae in insulin signaling and diabetes. Am J Physiol Endocrinol Metab 285:1151–1160. doi:10.1152/ajpendo.00324.2003

    Google Scholar 

  • Dolatshad H, Campbell EA, O’Hara L, Maywood ES, Hastings MH, Johnson MH (2006) Developmental and reproductive performance in circadian mutant mice. Hum Reprod 21:68–79. doi:10.1093/humrep/dei313

    Article  PubMed  CAS  Google Scholar 

  • Dunbar ME, Wysolmerski JJ (2001) Mammary ductal and alveolar development: lesson learned from genetically manipulated mice. Microsc Res Tech 52:163–170

    Article  PubMed  CAS  Google Scholar 

  • Flint DJ, Vernon RG (1998) Effects of food restriction on the responses of the mammary gland and adipose tissue to prolactin and growth hormone in the lactating rat. J Endocrinol 156:299–305. doi:10.1677/joe.0.1560299

    Article  PubMed  CAS  Google Scholar 

  • Froy O (2007) The relationship between nutrition and circadian rhythms in mammals. Front Neuroendocrinol 28:61–71

    Article  PubMed  CAS  Google Scholar 

  • Gentleman R, Carey V, Bates D, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini A, Sawitzki G, Smith C, Smyth G, Tierney L, Yang J, Zhang J (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5:R80

    Article  PubMed  Google Scholar 

  • German JB, Dillard CJ (2006) Composition, structure and absorption of milk lipids: a source of energy, fat-soluble nutrients and bioactive molecules. Crit Rev Food Sci Nutr 46:57–92

    Article  PubMed  CAS  Google Scholar 

  • Goffin V, Binart N, Touraine P, Kelly PA (2002) Prolactin: the new biology of an old hormone. Annu Rev Physiol 64:47–67

    Article  PubMed  CAS  Google Scholar 

  • Grattan D (2002) Behavioural significance of prolactin signalling in the central nervous system during pregnancy and lactation. Reproduction 123:497–506. doi:10.1530/rep.0.1230497

    Article  PubMed  CAS  Google Scholar 

  • Hamilton JA (2007) New insights into the roles of proteins and lipids in membrane transport of fatty acids. Prostaglandins Leukot Essent Fatty Acids 77:355–361

    Article  PubMed  CAS  Google Scholar 

  • Hartmann PE, Sherriff JL, Mitoulas LR (1998) Homeostatic mechanisms that regulate lactation during energetic stress. J Nutr 128:394S–399S

    PubMed  CAS  Google Scholar 

  • Hennighausen L, Robinson GW (1998) Think globally, act locally: the making of a mouse mammary gland. Genes Dev 12:449–455

    Article  PubMed  CAS  Google Scholar 

  • Hennighausen L, Robinson GW, Wagner K, Liu X (1997a) Prolactin signaling in mammary gland development. J Biol Chem 272:7567–7569

    Article  PubMed  CAS  Google Scholar 

  • Hennighausen L, Robinson GW, Wagner KU, Liu X (1997b) Developing a mammary gland is a stat affair. J Mammary Gland Biol Neoplasia 2:365–372

    Article  PubMed  CAS  Google Scholar 

  • Herrera E (2000) Metabolic adaptations in pregnancy and their implications for the availability of substrates to the fetus. Eur J Clin Nutr 54(Suppl 1):S47–S51

    PubMed  CAS  Google Scholar 

  • Herrera E, Lasuncion MA, Palacin M, Zorzano A, Bonet B (1991) Intermediary metabolism in pregnancy. First theme of the Freinkel era. Diabetes 40(Suppl 2):83–88

    PubMed  Google Scholar 

  • Hoshino K, Wakatsuki Y, Iigo M, Shibata S (2006) Circadian clock mutation in dams disrupts nursing behavior and growth of pups. Endocrinology 147:1916–1923. doi:10.1210/en.2005-1343

    Article  PubMed  CAS  Google Scholar 

  • Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Bioconductor 4:249–264

    Google Scholar 

  • Kamp F, Hamilton JA (2006) How fatty acids of different chain length enter and leave cells by free diffusion. Prostaglandins Leukot Essent Fatty Acids 75:149–159

    Article  PubMed  CAS  Google Scholar 

  • Knight CH, Peaker M (1982) Mammary cell proliferation in mice during pregnancy and lactation in relation to milk yield. Q J Exp Physiol 67:165–177

    PubMed  CAS  Google Scholar 

  • Kondratov R, Shamanna R, Kondratova A, Gorbacheva V, Antoch M (2006) Dual role of the CLOCK/BMAL1 circadian complex in transcriptional regulation. FASEB J 20:530–532. doi:10.1096/fj.05-5321fje

    PubMed  CAS  Google Scholar 

  • Liu CH, Li S, Liu T, Borjigin J, Lin J (2007) Transcriptional coactivator PGC-1alpha integrates the mammalian clock and energy metabolism. Nature 447:477–481

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-[Delta][Delta]CT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Lubetzky R, Littner Y, Mimouni F, Dollberg S, Mandel D (2006) Circadian variations in fat content of expressed breast milk from mothers of preterm infants. J Am Coll Nutr 25:151–154

    PubMed  Google Scholar 

  • Maglott D, Ostell J, Pruitt K, Tatusova T (2005) Entrez gene: gene-centered information at NCBI. Nucleic Acids Res 33:D54–D58

    Article  PubMed  CAS  Google Scholar 

  • Maningat PD, Sen P, Rijnkels M, Sunehag AL, Hadsell DL, Bray M, Haymond MW (2009) Gene expression in the human mammary epithelium during lactation: the milk fat globule transcriptome. Physiol Genomics 37:12–22. doi:10.1152/physiolgenomics.90341.2008

    Article  PubMed  CAS  Google Scholar 

  • Manolescu AR, Witkowska K, Kinnaird A, Cessford T, Cheeseman C (2007) Facilitated hexose transporters: new perspectives on form and function. Physiology 22:234–240. doi:10.1152/physiol.00011.2007

    Article  PubMed  CAS  Google Scholar 

  • Mather IH, Keenan TW (1998) Origin and secretion of milk lipids. J Mammary Gland Biol Neoplasia 3:259–273

    Article  PubMed  CAS  Google Scholar 

  • Mendelson CR, Scow RO (1972) Uptake of chylomicron-triglyceride by perfused mammary tissue of lactating rats. Am J Physiol 223:1418–1423

    PubMed  CAS  Google Scholar 

  • Menzies K, Lefèvre C, Sharp J, Macmillan K, Sheehy P, Nicholas K (2009) A novel approach identified the FOLR1 gene, a putative regulator of milk protein synthesis. Mamm Genome 20:498–503

    Article  PubMed  CAS  Google Scholar 

  • Moore BJ, Brasel JA (1984) One cycle of reproduction consisting of pregnancy, lactation or no lactation, and recovery: effects on fat pad cellularity in ad libitum-fed and food-restricted rats. J Nutr 114:1560–1565

    PubMed  CAS  Google Scholar 

  • Murphy SP, Abrams BF (1993) Changes in energy intakes during pregnancy and lactation in a national sample of US women. Am J Public Health 83:1161–1163

    Article  PubMed  CAS  Google Scholar 

  • Neville MC, Picciano MF (1997) Regulation of milk lipid secretion and composition. Annu Rev Nutr 17:159–183

    Article  PubMed  CAS  Google Scholar 

  • Neville MC, McFadden TB, Forsyth I (2002) Hormonal regulation of mammary differentiation and milk secretion. J Mammary Gland Biol Neoplasia 7:49–66

    Article  PubMed  Google Scholar 

  • Pohl J, Ring A, Ehehalt R, Herrmann T, Stremmel W (2004) New concepts of cellular fatty acid uptake: role of fatty acid transport proteins and of caveolae. Proc Nutr Soc 63:259–262

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen KM (1992) The influence of maternal nutrition on lactation. Annu Rev Nutr 12:103–117. doi:10.1146/annurev.nu.12.070192.000535

    Article  PubMed  CAS  Google Scholar 

  • Rosen JM, Wyszomierski SL, Hadsell D (1999) Regulation of milk protein gene expression. Annu Rev Nutr 19:407–436

    Article  PubMed  CAS  Google Scholar 

  • Rudolph MC, McManaman JL, Hunter L, Phang T, Neville MC (2003) Functional development of the mammary gland: use of expression profiling and trajectory clustering to reveal changes in gene expression during pregnancy, lactation, and involution. J Mammary Gland Biol Neoplasia 8:287–307

    Article  PubMed  Google Scholar 

  • Rudolph M, Neville M, Anderson S (2007a) Lipid synthesis in lactation: diet and the fatty acid switch. J Mammary Gland Biol Neoplasia 12:269–281

    Article  PubMed  Google Scholar 

  • Rudolph MC, McManaman J, Phang T, Russell T, Kominsky DJ, Serkova NJ, Stein T, Anderson SM, Neville MC (2007b) Metabolic regulation in the lactating mammary gland: a lipid synthesizing machine. Physiol Genomics 28:323–336

    PubMed  CAS  Google Scholar 

  • Sasaki S (2002) Mechanism of insulin action on glucose metabolism in ruminants. Anim Sci J 73:423–433

    Article  CAS  Google Scholar 

  • Scheepers A, Joost HG, Schurmann A (2004) The glucose transporter families SGLT and GLUT: molecular basis of normal and aberrant function. J Parenter Enteral Nutr 28:364–371

    Article  CAS  Google Scholar 

  • Schwertfeger KL, McManaman JL, Palmer CA, Neville MC, Anderson SM (2003) expression of constitutively activated Akt in the mammary gland leads to excess lipid synthesis during pregnancy and lactation. J Lipid Res 44:1100–1112

    Article  PubMed  CAS  Google Scholar 

  • Scow RO, Chernick SS, Fleck TR (1977) Lipoprotein lipase and uptake of triacylglycerol, cholesterol and phosphatidylcholine from chylomicrons by mammary and adipose tissue of lactating rats in vivo. Biochim Biophys Acta 487:297–306

    PubMed  CAS  Google Scholar 

  • Smythe GK (2004) Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3:1–26. Available at: http://www.r-project.org/

  • Stahl PJ, Felsen D (2001) Transforming growth factor-á, basement membrane, and epithelial-mesenchymal transdifferentiation: implications for fibrosis in kidney disease. Am J Pathol 159(4):1187–1192

    Article  PubMed  CAS  Google Scholar 

  • Stahl A, Gimeno RE, Tartaglia LA, Lodish HF (2001) Fatty acid transport proteins: a current view of a growing family. Trends Endocrinol Metab 12:266–273

    Article  PubMed  CAS  Google Scholar 

  • Thorens B (1996) Glucose transporters in the regulation of intestinal, renal, and liver glucose fluxes. Am J Physiol Gas Liv Phy 270:541–553

    Google Scholar 

  • Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84

    Article  PubMed  CAS  Google Scholar 

  • Vernon RG (1985) The response of tissues to hormones and the partition of nutrients during lactation. Hannah Res. pp. 115–121

  • Vernon RG (1989) Endocrine control of metabolic adaptation during lactation. Proc Nutr Soc 48:23–32

    Article  PubMed  CAS  Google Scholar 

  • Vernon RG (2005) Lipid metabolism during lactation: a review of adipose tissue-liver interactions and the development of fatty liver. J Dairy Res 72:460–469

    Article  PubMed  CAS  Google Scholar 

  • Vernon RG, Taylor E, Faulkner A (1984) Regulation of glucose metabolism in tissues of the sheep hind-limb: response to lactation. Can J Anim Sci 64:302–303

    Article  CAS  Google Scholar 

  • Vernon RG, Barber MC, Travers MT (1999) Present and future studies on lipogenesis in animals and human subjects. Proc Nutr Soc 58:541–549

    Article  PubMed  CAS  Google Scholar 

  • Williamson DH, Munday MR, Jones RG (1984) Biochemical basis of dietary influences on the synthesis of the macronutrients of rat milk. Fed Proc 43:2443–2447

    PubMed  CAS  Google Scholar 

  • Wood IS, Trayhurn P (2003) Glucose transporters (GLUT and SGLT): expanded families of sugar transport proteins. Br J Nutr 89:3–9

    Article  PubMed  CAS  Google Scholar 

  • Yonezawa T, Haga S, Kobayashi Y, Katoh K, Obara Y (2009) Saturated fatty acids stimulate and insulin suppresses CIDE-A expression in bovine mammary epithelial cells. Biochem Biophys Res Commun 384:535–539

    Article  PubMed  CAS  Google Scholar 

  • Zhao FQ, Keating AF (2007) Expression and regulation of glucose transporters in the bovine mammary gland. J Dairy Sci 90:E76–E86

    Article  PubMed  Google Scholar 

  • Zhu Q, Anderson GW, Mucha GT, Parks EJ, Metkowski JK, Mariash CN (2005) The spot 14 protein is required for de novo lipid synthesis in the lactating mammary gland. Endocrinology 146:3343–3350. doi:10.1210/en.2005-0204

    Article  PubMed  CAS  Google Scholar 

  • Zinder O, Mendelson CR, Blanchette-Mackie F, Scow RO (1976) Lipoprotein lipase and uptake of chylomicron triacylglycerol and cholesterol by perfused rat mammary tissue. Biochim Biophys Acta 431:526–537

    PubMed  CAS  Google Scholar 

  • Zvonic S, Ptitsyn AA, Conrad SA, Scott LK, Floyd ZE, Kilroy G, Wu X, Goh BC, Mynatt RL, Gimble JM (2006) Characterization of peripheral circadian clocks in adipose tissues. Diabetes 55(4):962–970

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We extend our gratitude to the NASA staff, particularly Lisa Baer, Dr. Charles Wade, and Dr. April Ronca of National Aeronautics and Space Administration (NASA) Ames Research Center for their expert help with running the experiment. We are grateful to Karl Dykema, Kyle Furge and Jim Liesman for their help with statistical analysis.

Financial support

This work was supported by NASA grant NNA05CP91A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theresa Casey.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Supplementary Table 1

(XLS 66 kb)

Supplementary Table 2

The numerical fold-change and P value for genes associated with solute transport, TCA cycle and fatty acid metabolism across adipose, liver and mammary tissues during the pregnancy to lactation transition. (DOC 59 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patel, O.V., Casey, T., Dover, H. et al. Homeorhetic adaptation to lactation: comparative transcriptome analysis of mammary, liver, and adipose tissue during the transition from pregnancy to lactation in rats. Funct Integr Genomics 11, 193–202 (2011). https://doi.org/10.1007/s10142-010-0193-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-010-0193-0

Keywords

Navigation