Skip to main content
Log in

Identification of transcripts associated with cell wall metabolism and development in the stem of sugarcane by Affymetrix GeneChip Sugarcane Genome Array expression profiling

  • Original Paper
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Sugarcane is an important crop in tropical regions of the world, producing a very large biomass and accumulating large amounts of sucrose in the stem. In this study, we present the first report of transcript profiling using the GeneChip Sugarcane Genome Array. We have identified transcripts that are differentially expressed in the sugarcane stem during development by expression profiling using the array and total RNA derived from three disparate stem tissues (meristem, internodes 1–3, 8, and 20) from four replicates of the sugarcane variety Q117 grown in the field. We have identified 119 transcripts that were highly differentially expressed with development and have characterised members of the cellulose synthase (CesA) and cellulose synthase-like (Csl) gene families, which displayed coordinated expression during stem development. In addition, we determined that many other transcripts involved in cell wall metabolism and lignification were also co-expressed with members of the CesA and Csl gene families, offering additional insights into the dynamics of primary and secondary cell wall synthesis in the developing sugarcane stem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Bairoch A (2000) The ENZYME database in 2000. Nucleic Acids Res 28:304–305

    Article  PubMed  CAS  Google Scholar 

  • Botha FC, Black KG (2000) Sucrose phosphate synthase and sucrose synthase activity during maturation of internodal tissue in sugarcane. Aust J Plant Physiol 27:81–85

    CAS  Google Scholar 

  • Bower NI, Casu RE, Maclean DJ, Reverter A, Chapman SC, Manners JM (2005) Transcriptional response of sugarcane roots to methyl jasmonate. Plant Sci 168:761–772

    Article  CAS  Google Scholar 

  • Bull T (2000) The sugarcane plant. In: Hogarth M, Allsop P (eds) Manual of cane growing. Bureau of Sugar Experiment Stations, Indooroopilly, Australia

    Google Scholar 

  • Bull TA, Glasziou KT (1963) The evolutionary significance of sugar accumulation in Saccharum. Aust J Biol Sci 16:737–742

    CAS  Google Scholar 

  • Burton RA, Shirley NJ, King BJ, Harvey AJ, Fincher GB (2004) The CesA gene family of barley. Quantitative analysis of transcripts reveals two groups of co-expressed genes. Plant Physiol 134:224–236

    Article  PubMed  CAS  Google Scholar 

  • Burton RA, Wilson SM, Hrmova M, Harvey AJ, Shirley NJ, Medhurst A, Stone BA, Newbigin EJ, Bacic A, Fincher GB (2006) Cellulose synthase-like CslF genes mediate the synthesis of cell wall (1,3;1,4)-β-D-glucans. Science 311:1940–1942

    Article  PubMed  CAS  Google Scholar 

  • Carpita NC, McCann MC (2000) The cell wall. In: Buchanan BB, Gruissem W, Jones R (eds) Biochemistry and molecular biology of plants. American Society Plant Physiologists, Rockville, MD

    Google Scholar 

  • Carson DL, Botha FC (2000) Preliminary analysis of expressed sequence tags for sugarcane. Crop Science 40:1769–1779

    Article  CAS  Google Scholar 

  • Carson DL, Botha FC (2002) Genes expressed in sugarcane maturing internodal tissue. Plant Cell Rep 20:1075–1081

    Article  CAS  Google Scholar 

  • Carson DL, Huckett BI, Botha FC (2002) Sugarcane ESTs differentially expressed in immature and maturing internodal tissue. Plant Sci 162:289–300

    Article  CAS  Google Scholar 

  • Casu RE, Grof CPL, Rae AL, McIntyre CL, Dimmock CM, Manners JM (2003) Identification of a novel sugar transporter homologue strongly expressed in maturing stem vascular tissues of sugarcane by expressed sequence tag and microarray analysis. Plant Mol Biol 52:371–386

    Article  PubMed  CAS  Google Scholar 

  • Casu RE, Dimmock CM, Chapman SC, Grof CPL, McIntyre CL, Bonnett GD, Manners JM (2004) Identification of differentially expressed transcripts from maturing stem of sugarcane by in silico analysis of stem expressed sequence tags and gene expression profiling. Plant Mol Biol 54:503–517

    Article  PubMed  Google Scholar 

  • Casu RE, Manners JM, Bonnett GD, Jackson PA, McIntyre CL, Dunne R, Chapman SC, Rae AL, Grof CPL (2005) Genomics approaches for the identification of genes determining important traits in sugarcane. Field Crops Res 92:137–147

    Article  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Anal Biochem 162:156–159

    Article  PubMed  CAS  Google Scholar 

  • Close TJ, Wanamaker SI, Caldo RA, Turner SM, Ashlock DA, Dickerson JA, Wing RA, Muehlbauer GJ, Kleinhofs A, Wise RP (2004) A new resource for cereal genomics: 22 K barley GeneChip comes of age. Plant Physiol 134:960–968

    Article  PubMed  CAS  Google Scholar 

  • Cooper B, Clarke JD, Budworth P, Kreps J, Hutchison D, Park S, Guimil S, Dunn M, Luginbühl P, Ellero C, Goff SA, Glazebrook J (2003) A network of rice genes associated with stress response and seed development. Proc Natl Acad Sci USA 100:4945–4950

    Article  PubMed  CAS  Google Scholar 

  • Cosgrove DJ (2000) Expansive growth of plant cell walls. Plant Physiol Biochem 38:109–124

    Article  PubMed  CAS  Google Scholar 

  • Domingo C, Roberts K, Stacey NJ, Connerton I, Ruiz-Teran F, McCann MC (1998) A pectate lyase from Zinnia elegans is auxin inducible. Plant J 13:17–28

    Article  PubMed  CAS  Google Scholar 

  • Gang DR, Kasahara H, Xia ZQ, Van der Mijnsbrugge K, Bauw G, Boerjan W, Van Montagu M, Davin LB, Lewis NG (1999) Evolution of plant defense mechanisms: relationships of phenylcoumaran benzylic ether reductases to pinoresinol–lariciresinol and isoflavone reductases. J Biol Chem 274:7516–7527

    Article  PubMed  CAS  Google Scholar 

  • Grivet L, D’Hont A, Roques D, Feldmann P, Lanaud C, Glaszmann JC (1996) RFLP mapping in cultivated sugarcane (Saccharum spp.): genome organization in a highly polyploid and aneuploid interspecific hybrid. Genetics 142:987–1000

    PubMed  CAS  Google Scholar 

  • Han GP, Wu QL (2004) Comparative properties of sugarcane rind and wood strands for structural composite manufacturing. For Prod J 54:283–288

    Google Scholar 

  • Handford MG, Baldwin TC, Goubet F, Prime TA, Miles J, Yu X, Dupree P (2003) Localisation and characterisation of cell wall mannan polysaccharides in Arabidopsis thaliana. Planta 218:27–36

    Article  PubMed  CAS  Google Scholar 

  • Hano C, Addi M, Bensaddek L, Crônier D, Baltora-Rosset S, Doussot J, Maury S, Mesnard F, Chabbert B, Hawkins S, Lainé E, Lamblin F (2006) Differential accumulation of monolignol-derived compounds in elicited flax (Linum usitatissimum) cell suspension cultures. Planta 223:975–989

    Article  PubMed  CAS  Google Scholar 

  • Hazen SP, Scott-Craig JS, Walton JD (2002) Cellulose synthase-like genes of rice. Plant Physiol 128:336–340

    Article  PubMed  CAS  Google Scholar 

  • Holland N, Holland D, Helentjaris T, Dhugga KS, Xoconostle-Cazares B, Delmer DP (2000) A comparative analysis of the plant cellulose synthase (CesA) gene family. Plant Physiol 123:313–1324

    Article  Google Scholar 

  • Iskandar HM, Simpson RS, Casu RE, Bonnett GD, Maclean DJ, Manners JM (2004) Comparison of reference genes for quantitative real-time polymerase chain reaction analysis of gene expression in sugarcane. Plant Mol Biol Report 22:325–337

    CAS  Google Scholar 

  • Jacobsen KR, Fisher DG, Moore PH (1992) Developmental changes in the anatomy of the sugarcane stem in relation to phloem unloading and sucrose storage. Bot Acta 105:70–80

    Google Scholar 

  • LaFayette PR, Eriksson K-EL, Dean JFD (1999) Characterization and heterologous expression of laccase cDNAs from xylem tissues of yellow-poplar (Liriodendron tulipifera). Plant Mol Biol 40:23–35

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Jones L, McQueen-Mason S (2003) Expansins and cell growth. Curr Opin Plant Biol 6:603–610

    Article  PubMed  CAS  Google Scholar 

  • Liepman AH, Wilkerson CG, Keegstra K (2005) Expression of cellulose synthase-like (Csl) genes in insect cells reveals that CslA family members encode mannan synthases. Proc Natl Acad Sci USA 102:2221–2226

    Article  PubMed  CAS  Google Scholar 

  • Lockhart DJ, Dong H, Byrne MC, Follettie MT, Gallo MV, Chee MS, Mittmann M, Wang C, Kobayashi M, Horton H, Brown EL (1996) Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat Biotechnol 14:1675–1680

    Article  PubMed  CAS  Google Scholar 

  • Ma HM, Schulze S, Lee S, Yang M, Mirkov E, Irvine J, Moore P, Paterson A (2004) An EST survey of the sugarcane transcriptome. Theor Appl Genet 108:851–863

    Article  PubMed  Google Scholar 

  • Marín-Rodríguez MC, Orchard J, Seymour GB (2002) Pectate lyases, cell wall degradation and fruit softening. J Exp Bot 53:2115–2119

    Article  PubMed  Google Scholar 

  • Moore PH (1987) Anatomy and morphology. In: Heinz DJ (ed) Sugarcane improvement through breeding. Elsevier, Amsterdam

    Google Scholar 

  • Murchie EH, Hubbart S, Peng S, Horton P (2005) Acclimation of photosynthesis to high irradiance in rice: gene expression and interactions with leaf development. J Exp Bot 56:449–460

    Article  PubMed  CAS  Google Scholar 

  • Nogueira FTS, de Rosa VE Jr, Menossi M, Ulian EC, Arruda P (2003) RNA expression profiles and data mining of sugarcane response to low temperature. Plant Physiol 132:1811–1824

    Article  PubMed  CAS  Google Scholar 

  • Paiva JMF, Trindade WG, Frollini E, Pardini LC (2004) Carbon fiber reinforced carbon composites from renewable sources. Polym Plast Technol Eng 43:1187–1211

    Article  CAS  Google Scholar 

  • Pandey A, Soccol CR, Nigam P, Soccol VT (2000) Biotechnological potential of agro-industrial residues. I: Sugarcane bagasse. Bioresour Technol 74:69–80

    Article  CAS  Google Scholar 

  • Raes J, Rohde A, Christensen JH, van de Peer Y, Boerjan W (2003) Genome-wide characterization of the lignification toolbox in Arabidopsis. Plant Physiol 133:1051–1071

    Article  PubMed  CAS  Google Scholar 

  • Ramakers C, Ruijter JM, Deprez RHL, Moorman AFM (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339:62–66

    Article  PubMed  CAS  Google Scholar 

  • Ranocha P, McDougall G, Hawkins S, Sterjiades R, Borderies G, Stewart D, Cabanes-Macheteau M, Boudet AM, Goffner D (1999) Biochemical characterization, molecular cloning and expression of laccases—a divergent gene family—in poplar. Eur J Biochem 259:485–495

    Article  PubMed  CAS  Google Scholar 

  • Ranocha P, Chabannes M, Chamayou S, Danoun S, Jauneau A, Boudet A-M, Goffner D (2002) Laccase down-regulation causes alterations in phenolic metabolism and cell wall structure in poplar. Plant Physiol 129:145–155

    Article  PubMed  CAS  Google Scholar 

  • Reiter WD (2002) Biosynthesis and properties of the plant cell wall. Curr Opin Plant Biol 5:536–542

    Article  PubMed  CAS  Google Scholar 

  • Richmond TA (2000) Higher plant cellulose synthases. Genome Biol 1:reviews3001.1–reviews3001.6

  • Richmond TA, Somerville CR (2000) The cellulose synthase superfamily. Plant Physiol 124:495–498

    Article  PubMed  CAS  Google Scholar 

  • Richmond TA, Somerville CR (2001) Integrative approaches to determining CSL function. Plant Mol Biol 47:131–143

    Article  PubMed  CAS  Google Scholar 

  • Rostoks N, Borevitz J, Hedley P, Russell J, Mudie S, Morris J, Cardle L, Marshall D, Waugh R (2005) Single-feature polymorphism discovery in the barley transcriptome. Genome Biol 6:R54

    Article  PubMed  CAS  Google Scholar 

  • Ruan YL, Xu SM, White R, Furbank RT (2004) Genotypic and developmental evidence for the role of plasmodesmatal regulation in cotton fiber elongation mediated by callose turnover. Plant Physiol 136:4104–4113

    Article  PubMed  CAS  Google Scholar 

  • Sangnark A, Noomhorm A (2004) Effect of dietary fiber from sugarcane bagasse and sucrose ester on dough and bread properties. Lebensmittel-Wissenschaft Und-Technologie 37:697–704

    Article  CAS  Google Scholar 

  • Sterjiades R, Ranocha P, Boudet AM, Goffner D (1996) Identification of specific laccase isoforms capable of polymerizing monolignols by an “in gel” procedure. Anal Biochem 242:158–161

    Article  PubMed  CAS  Google Scholar 

  • Sun JX, Sun XF, Zhao H, Sun RC (2004) Isolation and characterization of cellulose from sugarcane bagasse. Polym Degrad Stab 84:331–339

    Article  CAS  Google Scholar 

  • Taylor NG, Laurie S, Turner SR (2000) Multiple cellulose synthase catalytic subunits are required for cellulose synthesis in Arabidopsis. Plant Cell 12:2529–2540

    Article  PubMed  CAS  Google Scholar 

  • Taylor NG, Howells RM, Huttly AK, Vickers K, Turner SR (2003) Interactions among three distinct CesA proteins essential for cellulose synthesis. Proc Natl Acad Sci USA 100:1450–1455

    Article  PubMed  CAS  Google Scholar 

  • Verma DPS, Hong Z (2001) Plant callose synthase complexes. Plant Mol Biol 47:693–701

    Article  PubMed  CAS  Google Scholar 

  • Vettore AL, da Silva FR, Kemper EL, Arruda P (2001) The libraries that made SUCEST. Genet Mol Biol 24:1–7

    Article  CAS  Google Scholar 

  • Vettore AL, da Silva FR, Kemper EL, Souza GM, da Silva AM, Ferro MIT, Henrique-Silva F, Giglioti EA, Lemos MVF, Coutinho LL, Nobrega MP, Carrer H, Franca SC, Bacci M Jr, Goldman MHS, Gomes SL, Nunes LR, Camargo LEA, Siqueira WJ, Van Sluys M-A, Thiemann OH, Kuramae EE, Santelli RV, Marino CL, Targon MLPN, Ferro JA, Silveira HCS, Marini DC, Lemos EGM, Monteiro-Vitorello CB, Tambor JHM, Carraro DM, Roberto PG, Martins VG, Goldman GH, de Oliveira RC, Truffi D, Colombo CA, Rossi M, de Araujo PG, Sculaccio SA, Angella A, Lima MMA, de Rosa VEJ, Siviero F, Coscrato VE, Machado MA, Grivet L, Di Mauro SMZ, Nobrega FG, Menck CFM, Braga MDV, Telles GP, Cara FAA, Pedrosa G, Meidanis J, Arruda P (2003) Analysis and functional annotation of an expressed sequence tag collection for tropical crop sugarcane. Genome Res 13:2725–2735

    Article  PubMed  Google Scholar 

  • Watt DA, McCormick AJ, Govender C, Carson DL, Cramer MD, Huckett BI, Botha FC (2005) Increasing the utility of genomics in unravelling sucrose accumulation. Field Crops Res 92:149–158

    Article  Google Scholar 

  • Welbaum GE, Meinzer FC (1990) Compartmentation of solutes and water in developing sugarcane stalk tissue. Plant Physiol 93:1147–1153

    Article  PubMed  CAS  Google Scholar 

  • Whittaker A, Botha FC (1997) Carbon partitioning during sucrose accumulation in sugarcane internodal tissue. Plant Physiol 115:1651–1659

    PubMed  CAS  Google Scholar 

  • Yong W, Link B, O’Malley R, Tewari J, Hunter CT, Lu C-A, Li X, Bleecker AB, Koch KE, McCann MC, McCarty DR, Patterson SE, Reiter W-D, Staiger C, Thomas SR, Vermerris W, Carpita NC (2005) Genomics of plant cell wall biogenesis. Planta 221:747–751

    Article  PubMed  CAS  Google Scholar 

  • Zhu T, Budworth P, Chen W, Provart N, Chang H-S, Guimil S, Su W, Estes B, Zou G, Wang X (2003) Transcriptional control of nutrient partitioning during rice grain filling. Plant Biotechnol J 1:59–70

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The authors would like to thank Michael Hewitt for assistance with tissue collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosanne E. Casu.

Electronic supplementary materials

All supplementary data is available at http://www.csiro.au/mdata.

Supplementary Fig. 1

A Gene tree and Condition tree derived from the clustering of all probe sets based on their expression pattern and all biological replicates of each tissue type based on their overall similarity. M,I1–3: young stem; I8: maturing stem; I20: mature stem. Red: up-regulated; green: down-regulated; yellow: no change in expression; grey: not detected (DOC 354 kb)

Supplementary Fig. 2

Comparison of RFC in expression achieved using the Sugarcane Genome Array (GeneChip) and RT-qPCR. (i) StemV.01-StemV.04; (ii) StemV.05-StemV.08; (iii) StemV.09-StemV.12 (DOC 70 kb)

Supplementary Fig. 3

Comparison of RFC in expression achieved using the Sugarcane Genome Array (GeneChip) and RT-qPCR. (i) ShCesA2-ShCesA6; (ii) ShCesA7-ShCesA12; (iii) ShCslA9-ShCslF6 (DOC 65 kb)

Supplementary Table 1

Sequences of primers used for RT-qPCR analysis (DOC 57 kb)

Supplementary Table 2

Identity of the 774 probe sets were “absent”, i.e. did not register a signal on any GeneChip in this experiment (DOC 365 kb)

Supplementary Table 3

Library origin of sugarcane sequence-derived probe sets defined as “absent” for all GeneChips (DOC 28 kb)

Supplementary Table 4

List of probe sets present on the Affymetrix Sugar Cane Genome Array (XLS 3444 kb)

Supplementary Table 5

Expression ratios of 32 probe sets that are highly and robustly differentially up-regulated between young stem (M,I1–3) and more mature stem (I8 and I20). TC: The number of the Theoretical Contig as defined in the Sugarcane Gene Index hosted at TIGR (DOC 45 kb)

Supplementary Table 6

Expression ratios of 35 transcripts that are highly and robustly differentially down-regulated between young stem (M,I1–3) and more mature stem (I8 and I20). TC: The number of the Theoretical Contig as defined in the Sugarcane Gene Index hosted at TIGR (DOC 48 kb)

Supplementary Table 7

Expression ratios of transcripts that are differentially expressed in all three tissues sampled down the stem (DOC 31 kb)

Supplementary Table 8

Expression ratios of transcripts that were not detected in young stem but were differentially expressed in maturing and mature stem (DOC 33 kb)

Supplementary Table 9

Expression ratios of transcripts that were absent in young stem and expressed at similar levels in both maturing and mature stem (DOC 28 kb)

Supplementary Table 10

Expression ratios of transcripts that were expressed in young stem but absent in both maturing and mature stem. A: absent (DOC 44 kb)

Supplementary Table 11

Probe sets with similar expression patterns to each of the five cellulose synthase clusters sets. Data was required to be available for at least three of the four biological replicates for at least one tissue. Number pass: the number of GeneChips out of a possible 12 for which data was available. The probe sets used as a representative probe setto isolate all other members of each set are underlined (DOC 980 kb)

Supplementary Table 12

Examples of known proteins whose transcripts display similar regulation status in both microarray (Casu et al. 2003, 2004) and Affymetrix GeneChip expression profiles (DOC 30 kb)

Supplementary Methods

Analysis methods used to identify differentially expressed transcripts, irrespective of presumed functional identity (DOC 30 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casu, R.E., Jarmey, J.M., Bonnett, G.D. et al. Identification of transcripts associated with cell wall metabolism and development in the stem of sugarcane by Affymetrix GeneChip Sugarcane Genome Array expression profiling. Funct Integr Genomics 7, 153–167 (2007). https://doi.org/10.1007/s10142-006-0038-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-006-0038-z

Keywords

Navigation