Skip to main content
Log in

Alginate Microencapsulation for Oral Immunisation of Finfish: Release Characteristics, Ex Vivo Intestinal Uptake and In Vivo Administration in Atlantic Salmon, Salmo salar L.

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

This study examined the feasibility of alginate microcapsules manufactured using a low-impact technology and reagents to protect orally delivered immunogens for use as immunoprophylactics for fish. Physical characteristics and protein release kinetics of the microcapsules were examined at different pH and temperature levels using a microencapsulated model protein, bovine serum albumin (BSA). Impact of the microencapsulation process on contents was determined by analysing change in bioactivity of microencapsulated lysozyme. Feasibility of the method for oral immunoprophylaxis of finfish was assessed using FITC-labelled microcapsules. These were applied to distal intestinal explants of Atlantic salmon (Salmo salar) to investigate uptake ex vivo. Systemic distribution of microcapsules was investigated by oral administration of FITC-labelled microcapsules to Atlantic salmon fry by incorporating into feed. The microcapsules produced were structurally robust and retained surface integrity, with a modal size distribution of 250–750 nm and a tendency to aggregate. Entrapment efficiency of microencapsulation was 51.2 % for BSA and 43.2 % in the case of lysozyme. Microcapsules demonstrated controlled release of protein, which increased with increasing pH or temperature, and the process had no significant negative effect on bioactivity of lysozyme. Uptake of fluorescent-labelled microcapsules was clearly demonstrated by intestinal explants over a 24-h period. Evidence of microcapsules was found in the intestine, spleen, kidney and liver of fry following oral administration. Amenability of the microcapsules to intestinal uptake and distribution reinforced the strong potential for use of this microencapsulation method in oral immunoprophylaxis of finfish using sensitive immunogenic substances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agius C, Horne MT, Ward PD (1983) Immunization of rainbow trout, Salmo gairdneri Richardson, against vibriosis: comparison of an extract antigen with whole cell bacterins by oral and intraperitoneal routes. J Fish Dis 6:129–134

    Article  Google Scholar 

  • Allan G, Chopra C, Neogi A, Wilkins R (1971) Design and synthesis of controlled release pesticide-polymer combinations. Nature 234:349–351

  • Anal AK, Stevens WF, Remuñán-López C (2006) Ionotropic cross-linked chitosan microspheres for controlled release of ampicillin. Int J Pharm 312:166–173

    Article  CAS  PubMed  Google Scholar 

  • Atle L (1989) A cost-effectiveness study of three different methods of vaccination against vibriosis in salmonids. Aquaculture 83:227–236

    Article  Google Scholar 

  • Azaza MS, Dhraief MN, Kraiem MM, Baras E (2010) Influences of food particle size on growth, size heterogeneity, food intake and gastric evacuation in juvenile Nile tilapia, Oreochromis niloticus, L., 1758. Aquaculture 309:193–202

    Article  Google Scholar 

  • Bressel TAB, Paz AH, Bald G, Lima EOC, Matte U, Saraiva-Pereira ML (2008) An effective device for generating alginate microcapsules. Genet Mol Biol 31:136–140

    Article  CAS  Google Scholar 

  • Cleland J, Jones AS (1996) Stable formulations of recombinant human growth hormone and interferon-γ for microencapsulation in biodegradable microspheres. Pharm Res 13:1464–1475

    Article  CAS  PubMed  Google Scholar 

  • Cochran T, Nail SL (2009) Ice nucleation temperature influences recovery of activity of a model protein after freeze drying. J Pharm Sci 98:3495–3498

    Article  CAS  PubMed  Google Scholar 

  • Dalmo RA, Leifson RM, Bøgwald J (1995) Microspheres as antigen carriers: studies on intestinal absorption and tissue localization of polystyrene microspheres in Atlantic salmon, Salmo salar L. J Fish Dis 18:87–91

    Article  CAS  Google Scholar 

  • Davis SS (2006) The use of soluble polymers and polymer microparticles to provide improved vaccine responses after parenteral and mucosal delivery. Vaccine 24(Supplement 2):S7–S10

    Article  Google Scholar 

  • De Temmerman ML, Rejman J, Demeester J, Irvine DJ, Gander B, De Smedt SC (2011) Particulate vaccines: on the quest for optimal delivery and immune response. Drug Discov Today 16:569–582

    Article  PubMed  Google Scholar 

  • Defoirdt T, Sorgeloos P, Bossier P (2011) Alternatives to antibiotics for the control of bacterial disease in aquaculture. Curr Opin Microbiol 14:251–258

    Article  PubMed  Google Scholar 

  • Delie F (1998) Evaluation of nano- and microparticle uptake by the gastrointestinal tract. Adv Drug Deliv Rev 34:221–233

    Article  CAS  PubMed  Google Scholar 

  • Dhoot NO, Wheatley MA (2003) Microencapsulated liposomes in controlled drug delivery: strategies to modulate drug release and eliminate the burst effect. J Pharm Sci 92:679–689

    Article  CAS  PubMed  Google Scholar 

  • Dunn EJ, Polk AE, Scarrett DJ, Olivier G, Lall S, Goosen MFA (1990) Vaccines in aquaculture: the search for an efficient delivery system. Aquac Eng 9:23–32

    Article  Google Scholar 

  • Eldridge JH, Hammond CJ, Meulbroek JA, Staas JK, Gilley RM, Tice TR (1990) Controlled vaccine release in the gut-associated lymphoid tissues. I. Orally administered biodegradable microspheres target the Peyer’s patches. J Control Release 11:205–214

    Article  CAS  Google Scholar 

  • Eldridge JH, Staas JK, Meulbroek JA, McGhee JR, Tice TR, Gilley RM (1991) Biodegradable microspheres as a vaccine delivery system. Mol Immunol 28:287–294

    Article  CAS  PubMed  Google Scholar 

  • Firdaus-Nawi M, Yusoff SM, Yusof H, Abdullah S-Z, Zamri-Saad M (2013) Efficacy of feed-based adjuvant vaccine against Streptococcus agalactiae in Oreochromis spp. in Malaysia. Aquac Res 45:87–96

    Article  CAS  Google Scholar 

  • Fredriksen BN, Grip J (2012) PLGA/PLA micro-and nanoparticle formulations serve as antigen depots and induce elevated humoral responses after immunization of Atlantic salmon (Salmo salar L.). Vaccine 30:656–667

    Article  CAS  PubMed  Google Scholar 

  • Fuglem B et al (2010) Antigen-sampling cells in the salmonid intestinal epithelium. Dev Comp Immunol 34:768–774

    Article  CAS  PubMed  Google Scholar 

  • Fundueanu G, Esposito E, Mihai D, Carpov A, Desbrieres J, Rinaudo M, Nastruzzi C (1998) Preparation and characterization of Ca-alginate microspheres by a new emulsification method. Int J Pharm 170:11–21

    Article  CAS  Google Scholar 

  • Georgopoulou U, Dabrowski K, Sire MF, Vernier JM (1988) Absorption of intact proteins by the intestinal epithelium of trout, Salmo gairdneri. Cell Tissue Res 251:145–152

    Article  CAS  PubMed  Google Scholar 

  • Ghaderi R, Carlfors J (1997) Biological activity of lysozyme after entrapment in poly (d, l-lactide-co-glycolide)-microspheres. Pharm Res 14:1556–1562

    Article  CAS  PubMed  Google Scholar 

  • Gharsallaoui A, Roudaut G, Chambin O, Voilley A, Saurel R (2007) Applications of spray-drying in microencapsulation of food ingredients: an overview. Food Res Int 40:1107–1121

    Article  CAS  Google Scholar 

  • Gombotz WR, Wee SF (1998) Protein release from alginate matrices. Adv Drug Deliv Rev 31:267–285

    Article  CAS  PubMed  Google Scholar 

  • Grabner M, Hofer R (1985) The digestibility of the proteins of broad bean (Vicia faba) and soya bean (Glycine max) under in vitro conditions simulating the alimentary tracts of rainbow trout (Salmo gairdneri) and carp (Cyprinus carpio). Aquaculture 48:111–122

    Article  CAS  Google Scholar 

  • Haidar ZS, Hamdy RC, Tabrizian M (2008) Protein release kinetics for core–shell hybrid nanoparticles based on the layer-by-layer assembly of alginate and chitosan on liposomes. Biomaterials 29:1207–1215

    Article  CAS  PubMed  Google Scholar 

  • Hossain MAR, Haylor GS, Beveridge MCM (2000) The influence of food particle size on gastric emptying and growth rates of fingerling African catfish, Clarias gariepinus Burchell, 1822. Aquac Nutr 6:73–76

    Article  Google Scholar 

  • Hungerford G, Benesch J, Mano JF, Reis RL (2006) Effect of the labelling ratio on the photophysics of fluorescein isothiocyanate (FITC) conjugated to bovine serum albumin. Photochem Photobiol Sci 6:152–158

    Article  PubMed  Google Scholar 

  • Jaganathan KS, Rao YUB, Singh P, Prabakaran D, Gupta S, Jain A, Vyas SP (2005) Development of a single dose tetanus toxoid formulation based on polymeric microspheres: a comparative study of poly(d, l-lactic-co-glycolic acid) versus chitosan microspheres. Int J Pharm 294:23–32

    Article  CAS  PubMed  Google Scholar 

  • Jenkins PG, Howard KA, Blackhall NW, Thomas NW, Davis SS, Ohagan DT (1994) Microparticulate absorption from the rat intestine. J Control Release 29:339–350

    Article  CAS  Google Scholar 

  • Johnson KA, Amend DF (1983) Efficacy of Vibrio anguillarum and Yersinia ruckeri bacterins applied by oral and anal intubation of salmonids. J Fish Dis 6:473–476

    Article  Google Scholar 

  • Joosten PHM, Tiemersma E, Threels A, CaumartinDhieux C, Rombout JHWM (1997) Oral vaccination of fish against Vibrio anguillarum using alginate microparticles. Fish Shellfish Immunol 7:471–485

    Article  Google Scholar 

  • Kim BS et al (2009) BSA-FITC-loaded microcapsules for in vivo delivery. Biomaterials 30:902–909

    Article  CAS  PubMed  Google Scholar 

  • Lillehaug A (1989) Oral immunization of rainbow trout, Salmo gairdneri Richardson, against vibriosis with vaccines protected against digestive degradation. J Fish Dis 12:579–584

    Article  Google Scholar 

  • Lin C-C, Lin JH-Y, Chen M-S, Yang H-L (2007) An oral nervous necrosis virus vaccine that induces protective immunity in larvae of grouper (Epinephelus coioides). Aquaculture 268:265–273

    Article  CAS  Google Scholar 

  • Macdonald JS, Waiwood KG, Green RH (1982) Rates of digestion of different prey in Atlantic cod (Gadus morhua), ocean pout (Macrozoarces americanus), winter flounder (Pseudopleuronectes americanus), and American Plaice (Hippoglossoides platessoides). Can J Fish Aquat Sci 39:651–659

    Article  Google Scholar 

  • Martinac A, Filipovic-Greie J, Voinovich D, Perissutti B, Franceschinis E (2005) Development and bioadhesive properties of chitosan-ethylcellulose microspheres for nasal delivery. Int J Pharm 291:69–77

    Article  CAS  PubMed  Google Scholar 

  • McClean S, Prosser E, Meehan E, O’Malley D, Clarke N, Ramtoola Z, Brayden D (1998) Binding and uptake of biodegradable poly-dl-lactide micro- and nanoparticles in intestinal epithelia. Eur J Pharm Sci 6:153–163

    Article  CAS  PubMed  Google Scholar 

  • Midtlyng PJ, Grave K, Horsberg TE (2011) What has been done to minimize the use of antibacterial and antiparasitic drugs in Norwegian aquaculture? Aquac Res 42:28–34

    Article  Google Scholar 

  • Mooren FC, Berthold A (1998) Influence of chitosan microspheres on the transport of prednisone sodium phosphate across HT-29 cell monolayers. Pharm Res 15:58–65

  • Moriyama S, Takahashi A, Hirano T, Kawauchi H (1990) Salmon growth hormone is transported into the circulation of rainbow trout, Oncorhynchus mykiss, after intestinal administration. J Comp Physiol B 160:251–257

    Article  CAS  Google Scholar 

  • Newman SG (1993) Bacterial vaccines for fish. Annu Rev Fish Dis 3:145–185

    Article  Google Scholar 

  • O’Donnell GB, Reilly P, Davidson GA, Ellis AE (1996) The uptake of human gamma globulin incorporated into poly (D, L-lactide-co-glycolide) microparticles following oral intubation in Atlantic salmon, Salmo salar L. Fish Shellfish Immunol 6:507–520

    Article  Google Scholar 

  • Parry RM, Chandan RC, Shahani KM (1965) A rapid and sensitive assay of muramidase. Exp Biol Med 119:384–386

  • Petrie AG, Ellis AE (2006) Evidence of particulate uptake by the gut of Atlantic salmon (Salmo salar L.). Fish Shellfish Immunol 20:660–664

    Article  PubMed  Google Scholar 

  • Pinto-Alphandary H, Aboubakar M, Jaillard D, Couvreur P, Vauthier C (2003) Visualization of insulin-loaded nanocapsules: in vitro and in vivo studies after oral administration to rats. Pharm Res 20:1071–1084

    Article  CAS  PubMed  Google Scholar 

  • Polk AE, Amsden B, Scarratt DJ, Gonzal A, Okhamafe AO, Goosen MFA (1994) Oral delivery in aquaculture—controlled-release of proteins from chitosan-alginate microcapsules. Aquac Eng 13:311–323

    Article  Google Scholar 

  • Post G (1966) Response of rainbow trout (Salmo gairdneri) to antigens of Aeromonas hydrophila. J Fish Res Board Can 23:1487–1494

    Article  Google Scholar 

  • Rasband WS (1997–2012) ImageJ. U.S. National Institutes of Health, Bethesda

  • Rombout JHWM, van den Berg AA (1989) Immunological importance of the second gut segment of carp. I. Uptake and processing of antigens by epithelial cells and macrophages. J Fish Biol 35:13–22

    Article  Google Scholar 

  • Rombout JHWM, Lamers CHJ, Helfrich MH, Dekker A, Taverne-Thiele JJ (1985) Uptake and transport of intact macromolecules in the intestinal epithelium of carp (Cyprinus carpio L.) and the possible immunological implications. Cell Tissue Res 239:519–530

    Article  CAS  PubMed  Google Scholar 

  • Rombout JHWM, Bot HE, Taverne-Thiele JJ (1989a) Immunological importance of the second gut segment of carp. II. Characterization of mucosal leucocytes. J Fish Biol 35:167–178

    Article  Google Scholar 

  • Rombout JHWM, van den Berg AA, van der Berg CTGA, Witte P, Egberts E (1989b) Immunological importance of the second gut segment of carp. III. Systemic and/or mucosal immune responses after immunization with soluble or particulate antigen. J Fish Biol 35:179–186

    Article  Google Scholar 

  • Rombout JHWM, Abelli L, Picchietti S, Scapigliati G, Kiron V (2011) Teleost intestinal immunology. Fish Shellfish Immunol 31:616–626

    Article  CAS  PubMed  Google Scholar 

  • Sivadas N et al (2008) A comparative study of a range of polymeric microspheres as potential carriers for the inhalation of proteins. Int J Pharm 358:159–167

    Article  CAS  PubMed  Google Scholar 

  • Smyth SH, Doyle-McCullough M, Cox OT, Carr KE (2005) Effect of reproductive status on uptake of latex microparticles in rat small intestine. Life Sci 77:3287–3305

    Article  CAS  PubMed  Google Scholar 

  • Sommerset I, Krossoy B, Biering E, Frost P (2005) Vaccines for fish in aquaculture. Expert Rev Vaccines 4:89–101

    Article  CAS  PubMed  Google Scholar 

  • Suksamran T, Opanasopit P, Rojanarata T, Ngawhirunpat T, Ruktanonchai U, Supaphol P (2009) Biodegradable alginate microparticles developed by electrohydrodynamic spraying techniques for oral delivery of protein. J Microencapsul 26:563–570

    Article  CAS  PubMed  Google Scholar 

  • Tafaghodi M, Tabassi SAS, Jaafari MR (2006) Induction of systemic and mucosal immune responses by intranasal administration of alginate microspheres encapsulated with tetanus toxoid and CpG-ODN. Int J Pharm 319:37–43

    Article  CAS  PubMed  Google Scholar 

  • Tian J, Sun X, Chen X, Yu J, Qu L, Wang L (2008) The formulation and immunisation of oral poly(DL-lactide-co-glycolide) microcapsules containing a plasmid vaccine against lymphocystis disease virus in Japanese flounder (Paralichthys olivaceus). Int Immunopharmacol 8:900–908

    Article  CAS  PubMed  Google Scholar 

  • Tonnesen HH, Karlsen J (2002) Alginate in drug delivery systems. Drug Dev Ind Pharm 28:621–630

    Article  CAS  PubMed  Google Scholar 

  • van de Weert M, Hennink WE, Jiskoot W (2000) Protein instability in poly (lactic-co-glycolic acid) microparticles. Pharm Res 17:1159–1167

    Article  PubMed  Google Scholar 

  • van der Lubben IM, Verhoef JC, van Aelst AC, Borchard G, Junginger HE (2001) Chitosan microparticles for oral vaccination: preparation, characterization and preliminary in vivo uptake studies in murine Peyer’s patches. Biomaterials 22:687–694

    Article  PubMed  Google Scholar 

  • Veillette P, Young G (2005) Tissue culture of sockeye salmon intestine: functional response of Na, K-ATPase to cortisol. Am J Physiol Regul Integr Comp Physiol 288:R1598–R1605

    Article  CAS  PubMed  Google Scholar 

  • Wang W et al (2006) Microencapsulation using natural polysaccharides for drug delivery and cell implantation. J Mater Chem 16:3252–3267

    Article  CAS  Google Scholar 

  • Wischke C, Zhang Y, Mittal S, Schwendeman S (2010) Development of PLGA-based injectable delivery systems for hydrophobic fenretinide. Pharm Res 27:2063–2074

    Article  CAS  PubMed  Google Scholar 

  • Wong G, Kaattari SL, Christensen JM (1992) Effectiveness of an oral enteric coated Vibrio vaccine for use in salmonid fish. Immunol Invest 21:353–364

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Wei W, Lv P, Wang L, Ma G (2011) Preparation and evaluation of alginate-chitosan microspheres for oral delivery of insulin. Eur J Pharm Biopharm 77:11–19

    Article  CAS  PubMed  Google Scholar 

  • Zheng C-H, Gao J-Q, Zhang Y-P, Liang W-Q (2004) A protein delivery system: biodegradable alginate–chitosan–poly(lactic-co-glycolic acid) composite microspheres. Biochem Biophys Res Commun 323:1321–1327

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Karsten Goemann at the Central Science Laboratory (University of Tasmania) for his expertise, guidance and assistance with the use and application of the scanning electron microscopy techniques.

Compliance with ethical standards

Ethical approval

All procedures on fish were performed in accordance with approved animal handling guidelines (University of Tasmania Animal Ethics Committee approval Ref: 11594).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bikramjit Ghosh.

Additional information

Highlights

• Model proteins were successfully polymer-microencapsulated without use of harsh excipients

• Release rates increased with increase in pH (at 15 °C) over 24 h

• No burst release at typical temperatures for salmonid culture observed

• Microencapsulation process had no negative effect on lysozyme bioactivity

• Microcapsule uptake through intestinal epithelium was visible ex vivo

• Systemic distribution of microencapsulated material was observed when administered with feed

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, B., Nowak, B.F. & Bridle, A.R. Alginate Microencapsulation for Oral Immunisation of Finfish: Release Characteristics, Ex Vivo Intestinal Uptake and In Vivo Administration in Atlantic Salmon, Salmo salar L.. Mar Biotechnol 17, 841–853 (2015). https://doi.org/10.1007/s10126-015-9663-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-015-9663-7

Keywords

Navigation