Skip to main content
Log in

Investigation on the Structure and Performance of Polypropylene Sheets and Bi-axially Oriented Polypropylene Films for Capacitors

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Polypropylene (PP) sheets are cast with various chill roll temperatures and rates, which are studied with differential scanning calorimetry, wide angel X-ray diffraction, scanning electronic microscopy and dielectric withstand voltage test system. The results show that increasing the chill roll temperature and cast rate can promote the increase of crystallinity and the growth of β-form. The PP sheets have asymmetric skin layer structures. The lower the chill roll temperature, the thicker the skin layer, the smaller the spherulite size. The electric breakdown strength (Eb) of PP sheets is mainly affected by the crystallinity but not the morphology. The PP sheets are further stretched to prepare bi-axially oriented PP (BOPP) films with various heat setting time. Our results indicate that the structure of PP sheets affects the properties of BOPP films. The as prepared BOPP films from the sheets cast at high chill roll temperature and rate have the highest crystallinity and Eb. Heat setting time has profound effect on the crystallinity and Eb, which increase first and then decrease with the heat setting time. It is expected that our study can provide guidance for optimizing process parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ritamäki, M.; Rytöluoto, I.; Lahti, K. Performance metrics for a modern BOPP capacitor film. IEEE Trans. Dielectr. Electr. Insul. 2019, 26, 1229–1237.

    Article  Google Scholar 

  2. Li, H.; Li, Z. W.; Xu, Z. J.; Lin, F. C.; Wang, B. W.; Li, H.; Zhang, Y. Q.; Wang, W. J.; Huang, X. Electric field and temperature dependence of electrical conductivity in biaxially oriented polypropylene films. IEEE Trans. Plasma Sci. 2014, 42, 3585–359.

    Article  CAS  Google Scholar 

  3. Nash, J. L. Biaxially oriented polypropylene film in power capacitors. Polym. Eng. Sci. 1988, 28, 862–870.

    Article  CAS  Google Scholar 

  4. Ho, J.; Jow, T. R. High field conduction in biaxially oriented polypropylene at elevated temperature. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 990–995.

    Article  CAS  Google Scholar 

  5. Anderson, E. W.; McCall, D. W. The dielectric constant and loss of polypropylene. J. Polym. Sci. 1958, 31, 241–242.

    Article  Google Scholar 

  6. Xiong, J.; Wang, X.; Zhang, X.; Xie, Y. C.; Lu, J. Y.; Zhang, Z. C. How the biaxially stretching mode influence dielectric and energy storage properties of polypropylene films. J. App. Polym. Sci. 2021, 138, e50029.

    Article  Google Scholar 

  7. Xu, R. R.; Du, B. X.; Xiao, M.; Li, J.; Liu, H. L.; Ran, Z. Y.; Xing, J. W. Dielectric properties dependent on crystalline morphology of PP film for HVDC capacitors application. Polymer 2021, 213, 123204.

    Article  CAS  Google Scholar 

  8. Xu, R. R.; Xing, J. W.; Du, B. X.; Xiao, M.; Li, J. Improved breakdown strength of polypropylene film by polycyclic compounds addition for power capacitors. Materials 2021, 14, 1185.

    Article  CAS  Google Scholar 

  9. Streibl, M.; Werner, S.; Kaschta, J.; Schubert, D. W. and Moos, R. The influence of nanoparticles and their functionalization on the dielectric properties of biaxially oriented polypropylene for power capacitors. IEEE Trans. Dielectr. Electr. Insul. 2020, 27, 468–475.

    Article  CAS  Google Scholar 

  10. Zhou, Y.; Hu, J.; Dang, B.; He, J. Effect of different nanoparticles on tuning electrical properties of polypropylene nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 1380–1389.

    Article  CAS  Google Scholar 

  11. Takala, M.; Ranta, H.; Nevalainen, P.; Pakonen, P.; Pelto, J.; Karttunen, M.; Virtanen, S.; Koivu, V.; Pettersson, M.; Sonerud, B.; Kannus, K. Dielectric properties and partial discharge endurance of polypropylene-silica nanocomposite. IEEE Trans. Dielectr. Electr. Insul. 2010, 17, 1259–1267.

    Article  CAS  Google Scholar 

  12. Zhou, Y.; Dang, B.; Wang, H.; Liu, J.; Li, Q.; Hu, J.; He, J. Polypropylene-based ternary nanocomposites for recyclable high-voltage direct-current cable insulation. Compos. Sci. Technol. 2018, 165, 168–174.

    Article  CAS  Google Scholar 

  13. Chi, X.; Cheng, L.; Liu, W.; Zhang, X.; Li, S. Characterization of polypropylene modified by blending elastomer and nano-silica. Materials 2018, 11, 1321.

    Article  Google Scholar 

  14. Fujiyama, M.; Kawamura, Y.; Wakino, T.; Okamoto, T. Study on rough-surface biaxially oriented polypropylene film. VI. Roughening by laminated cast sheet. J. Appl. Polym. Sci. 1988, 36, 1049–1059.

    Article  CAS  Google Scholar 

  15. Lüpke, T.; Dunger, S.; Sänze, J.; Radusch, H. J. Sequential biaxial drawing of polypropylene films. Polymer 2004, 45, 6861–6872.

    Article  Google Scholar 

  16. Rytöluoto, I.; Gitsas, A.; Pasanen, S.; Lahti, K. Effect of film structure and morphology on the dielectric breakdown characteristics of cast and biaxially oriented polypropylene films. Eur. Polym. J. 2017, 95, 606–624.

    Article  Google Scholar 

  17. Zhang, D. X.; Ding, L.; Yang, F.; Lan, F.; Cao, Y.; Xiang, M. Comparison of the structural evolution of β polypropylene during the sequential and simultaneous biaxial stretching process. Chinese J. Polym. Sci. 2021, 39, 620–631.

    Article  CAS  Google Scholar 

  18. Huo, H.; Jiang, S.; An, L.; Feng, J. Influence of shear on crystallization behavior of the β phase in isotactic polypropylene with β-nucleating agent. Macromolecules 2004, 37, 2478–2483.

    Article  CAS  Google Scholar 

  19. Jones, A. T.; Aizlewood, J. M.; Beckett, D. R. Crystalline forms of isotactic polypropylene. Makromol. Chem. 1964, 75, 134–158.

    Article  Google Scholar 

  20. Marcincin, A., Ujhelyiova, A.; Marcincin, K.; Alexy, P. Nucleation of the beta-modificiation of isotactic polypropylene. J. Therm. Anal. Calorim. 1996, 46, 581–595.

    Article  CAS  Google Scholar 

  21. Yamamoto, Y.; Inoue, Y.; Onai, T.; Doshu, C.; Takahashi, H.; Uehara, H. Deconvolution analyses of differential scanning calorimetry profiles of β-crystallized polypropylenes with synchronized X-ray measurements. Macromolecules 2007, 40, 2745–2750.

    Article  CAS  Google Scholar 

  22. Menyhard, A.; Varga, J.; Molnar, G. Comparison of different beta-nucleators for isotactic polypropylene, characterisation by DSC and temperature-modulated DSC (TMDSC) measurements. J. Therm. Anal. Calorim. 2006, 83, 625–630.

    Article  CAS  Google Scholar 

  23. Luo, F.; Geng, C.; Wang, K.; Deng, H.; Chen, F.; Fu, Q.; Na, B. New understanding in tuning toughness of β-polypropylene: the role of β-nucleated crystalline morphology. Macromolecules 2009, 42, 9325–9331.

    Article  CAS  Google Scholar 

  24. Jiang, J. Y.; Zhang, X.; Dan, Z. K.; Ma, J.; Lin, Y. H.; Li, M.; Nan, C. W.; Shen, Y. Tuning phase composition of polymer nanocomposites toward high energy density and high discharge efficiency by non-equilibrium processing. ACS Appl. Mater. Interfaces 2017, 9, 29717–29731.

    Article  CAS  Google Scholar 

  25. Zhou, T.; Zha, J. W.; Cui, R. Y.; Fan, B. H.; Yuan, J. K.; Dang, Z. M. Improving dielectric properties of BaTiO3/ferroelectric polymer composites by employing surface hydroxylated BaTiO3 nanoparticles. ACS Appl. Mater. Interfaces 2011, 3, 2184–2188.

    Article  CAS  Google Scholar 

  26. Wang, Q. M.; Niu, X. F.; Pei, Q. B.; Dickey, M. D.; Zhao, X. H. Electromechanical instabilities of thermoplastics: theory and in situ observation. Appl. Phys. Lett. 2012, 101, 141911.

    Article  Google Scholar 

  27. Wang, Q. M.; Zhang, L.; Zhao, X. H. Creasing to cratering instability in polymers under ultrahigh electric fields. Phys. Rev. Lett. 2011, 106, 118301.

    Article  Google Scholar 

  28. Stark, K. H.; Garton, C. G. Electric strength of irradiated polythene. Nature 1955, 176, 1225–1226.

    Article  Google Scholar 

  29. Blok, G.; LeGrand, D. G. Dielectric breakdown of polymer films. J. Appl. Phys. 1969, 40, 288–293.

    Article  CAS  Google Scholar 

  30. Zhao, X. H.; Suo, Z. G. Electromechanical instability in semicrystalline polymers. Appl. Phys. Lett. 2009, 95, 031904.

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the State Key Laboratory of Advanced Power Transmission Technology (No. GEIRI-SKL-2020-009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xi-Ying Dai or Jian-Jun Zhou.

Additional information

Notes

The authors declare no competing financial interest.

Electronic Supplementary Information

10118_2022_2805_MOESM1_ESM.pdf

Investigation on the Structure and Performance of Polypropylene Sheets and Bi-axially Oriented Polypropylene Films for Capacitors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Dai, XY., Xing, ZL. et al. Investigation on the Structure and Performance of Polypropylene Sheets and Bi-axially Oriented Polypropylene Films for Capacitors. Chin J Polym Sci 40, 1688–1696 (2022). https://doi.org/10.1007/s10118-022-2805-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-022-2805-2

Keywords

Navigation