Skip to main content
Log in

A revised pre-order principle and set-valued Ekeland variational principles with generalized distances

  • Published:
Acta Mathematica Sinica, English Series Aims and scope Submit manuscript

Abstract

In my former paper “A pre-order principle and set-valued Ekeland variational principle” (see [J. Math. Anal. Appl., 419, 904–937 (2014)]), we established a general pre-order principle. From the pre-order principle, we deduced most of the known set-valued Ekeland variational principles (denoted by EVPs) in set containing forms and their improvements. But the pre-order principle could not imply Khanh and Quy’s EVP in [On generalized Ekeland’s variational principle and equivalent formulations for set-valued mappings, J. Glob. Optim., 49, 381–396 (2011)], where the perturbation contains a weak τ-function, a certain type of generalized distances. In this paper, we give a revised version of the pre-order principle. This revised version not only implies the original pre-order principle, but also can be applied to obtain the above Khanh and Quy’s EVP. In particular, we give several new set-valued EVPs, where the perturbations contain convex subsets of the ordering cone and various types of generalized distances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bao, T. Q., Mordukhovich, B. S.: Variational principles for set-valued mappings with applications to multiobjective optimization. Control Cybern., 36, 531–562 (2007)

    MATH  Google Scholar 

  2. Bao, T. Q., Mordukhovich, B. S.: Relative Pareto minimizers for multiobjective problems: existence and optimality conditions. Math. Program, Ser. A, 122, 301–347 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bednarczk, E. M., Zagrodny, D.: Vector variational principle. Arch. Math. (Basel), 93, 577–586 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, G. Y., Huang, X. X., Yang, X. G.: Vector Optimization, Set-Valued and Variational Analysis, Springer-Verlag, Berlin, 2005

    MATH  Google Scholar 

  5. Ekeland, I.: Sur les probèmes variationnels. C. R. Acad. Sci. Paris, 275, 1057–1059 (1972)

    MathSciNet  MATH  Google Scholar 

  6. Ekeland, I.: On the variational principle. J. Math. Anal. Appl., 47, 324–353 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ekeland, I.: Nonconvex minimization problems. Bull. Amer. Math. Soc. (N.S.), 1, 443–474 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  8. Flores-Bazán, F., Gutiérrez, C., Novo, V.: A Brézis–Browder principle on partially ordered spaces and related ordering theorems. J. Math. Anal. Appl., 375, 245–260 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Göpfert, A., Riahi, H., Tammer, C., et al.: Variational Methods in Partially Ordered Spaces, Springer-Verlag, New York, 2003

    MATH  Google Scholar 

  10. Göpfert, A., Tammer C., Zălinescu, C.: On the vectorial Ekeland’s variational principle and minimal point theorems in product spaces. Nonlinear Anal., 39, 909–922 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gutiérrez, C., Jiménez, B., Novo, V.: A set-valued Ekeland’s variational principle in vector optimization. SIAM J. Control. Optim., 47, 883–903 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ha, T. X. D.: Some variants of the Ekeland variational principle for a set-valued map. J. Optim. Theory Appl., 124, 187–206 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hamel, A. H.: Equivalents to Ekeland’s variational principle in uniform spaces. Nonlinear Anal., 62, 913–924 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Horváth, J.: Topological Vector Spaces and Distributions. vol. 1, Addison-Wesley, Reading, MA, 1966

    MATH  Google Scholar 

  15. Kada, Q., Suzuki, T., Takahashi, W.: Nonconvex minimization theorems and fixed point theorems in complete metric spaces. Math. Japon., 44, 381–391 (1996)

    MathSciNet  MATH  Google Scholar 

  16. Khanh, P. Q., Quy, D. N.: On generalized Ekeland’s variational principle and equivalent formulations for set-valued mappings. J. Glob. Optim., 49, 381–396 (2011)

    Article  MATH  Google Scholar 

  17. Khanh, P. Q., Quy, D. N.: Versions of Ekeland’s variational principle involving set perturbations. J. Glob. Optim., 57, 951–968 (2013)

    Article  MATH  Google Scholar 

  18. Lin, L. J., Du, W. S.: Ekeland’s variational principle, minimax theorems and existence of nonconvex equilibria in complete metric spaces. J. Math. Anal. Appl., 323, 360–370 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liu, C. G., Ng, K. F.: Ekeland’s variational principle for set-valued functions. SIAM J. Optim., 21, 41–56 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Németh, A. B.: A nonconvex vector minimization problem. Nonlinear Anal., 10, 669–678 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  21. Pérez, Carreras, P., Bonet, J.: Barrelled Locally Convex Spaces, North-Holland, Amsterdam, 1987

    MATH  Google Scholar 

  22. Qiu, J. H.: Local completeness and dual local quasi-completeness. Proc. Amer. Math. Soc., 129, 1419–1425 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Qiu, J. H.: On Ha’s version of set-valued Ekeland’s variational principle. Acta Math. Sin., Engl. Ser., 28, 717–726 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Qiu, J. H.: Set-valued quasi-metrics and a general Ekeland’s variational principle in vector optimization. SIAM J. Control Optim., 51, 1350–1371 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Qiu, J. H.: The domination property for efficiency and Bishop–Phelps theorem in locally convex spaces. J. Math. Anal. Appl., 402, 133–146 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Qiu, J. H.: A pre-order principle and set-valued Ekeland variational principle. J. Math. Anal. Appl., 419, 904–937 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Qiu, J. H., He, F.: p-distances, q-distances and a generalized Ekeland’s variational principle in uniform spaces. Acta Math. Sin., Engl. Ser., 28, 235–254 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Suzuki, T.: Generalized distance and existence theorems in complete metric spaces. J. Math. Anal. Appl., 253, 440–458 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Tammer, C., Zălinescu, C.: Vector variational principle for set-valued functions. Optimization, 60, 839–857 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zălinescu, C.: Convex Analysis in General Vector Spaces, World Sci., Singapore, 2002

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Hui Qiu.

Additional information

Supported by National Natural Science Foundation of China (Grant Nos. 11471236 and 11561049)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, J.H. A revised pre-order principle and set-valued Ekeland variational principles with generalized distances. Acta. Math. Sin.-English Ser. 33, 775–792 (2017). https://doi.org/10.1007/s10114-017-5062-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-017-5062-5

Keywords

MR(2010) Subject Classification

Navigation