Skip to main content
Log in

On the role of human operators in the design process of cobotic systems

  • Original Article
  • Published:
Cognition, Technology & Work Aims and scope Submit manuscript

Abstract

Industrial cobotics is presented as a way of business competitiveness by combining human skills and decision making with robotic advantages. The place and safety of humans in cobotic (collaborative robotic) systems are the subjects of much discussion. This article provides a qualitative overview of the main multidisciplinary fields related to the place of human operators during the design process of humans–robots’ systems and discusses paths for effective consideration of the human challenge during this kind of design projects. The added value of this article is its multidisciplinary aspect. Readers will find in this article a technological overview of cobotics, different methodologies and design models focused on final users, interesting examples of evaluation indicators potentially adapted to an effective consideration of humans during the design process of cobotic systems (economic, technical, and human) and guidelines seeking to support cobotic system designers to succeed considering final users during the design process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

source: ISO9241(2010)

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Handling assistance robots carried by users.

  2. The French National Research and Safety Institute.

  3. The notion of ‘cluster concept’ goes back to the fundamental criticisms of the classical theory of definition by Ludwig Wittgenstein and describes a concept with a list of associated attributes (Flemisch et al. 2014).

  4. Safran is an international high-technology group.

  5. The French National Research and Safety Institute for the Prevention of Occupational accidents and Diseases.

  6. Small- and medium-sized enterprises.

References

  • Baltzer MCA, López D, Flemisch F (2019) Towards an interaction pattern language for human machine cooperation and cooperative movement. Cogn Tech Work (2019).https://doi.org/10.1007/s10111-019-00561-8

  • Barcellini F, Van Belleghem L, Daniellou F (2013) Les projets de conception comme opportunité de développement des activités. In Falzon P. (dir) Ergonomie constructive, University Presses of France, pp 191–206. https://halshs.archives-ouvertes.fr/halshs-00860635

  • Benchekroun T-H and Weill-Fassina A (2000) Le travail collectif : Perspectives actuelles en ergonomie. Octares Editions: Toulouse-France.

  • Benchekroun T-H (2015) Coopération conflictuelle. Biennale internationale de l’education, de la formation et des pratiques professionnelles. Cnam, Paris-France. https://ergonomie-self.org/wp-content/uploads/2018/08/actesself2016-49-59.pdf

  • Benchekroun T-H (2015) Intervenir en ergonomie : analyser le travail pour le comprendre et transformer le travail pour le concevoir. Proceedings of the 51st SELF Congress, Marseille-France, 21–23.

  • Bodker S (1999) Scenarios in user-centred design-setting the stage for reflection and action. Proceedings of the 32nd annual hawaii international conference on systems sciences. Doi: https://doi.org/10.1109/HICSS.1999.772892.

  • Bounouar M, Bearee R, Benchekroun T-H and Siadat A (2019) Etat des lieux de la cobotique industrielle et de la conduite de projet associée. Proceedings of the 16th S-mart colloque, Les Karellis-France.

  • Bounouar M, Bearee R, Siadat A, Klement N and Benchekroun T-H (2020) User-centered design of a collaborative robotic system for an industrial recycling operation. Proceedings of the 1st international conference on innovative research in applied science, engineering and technology (IRASET), in IEEE Xplore: https://ieeexplore.ieee.org/document/9092178

  • Boy G-A (2013) Orchestrating human–centered design. Springer, London. https://doi.org/10.1007/978-1-4471-4339-0

    Article  Google Scholar 

  • Boy G-A and Narkevicius J-M (2014) Unifying human centered design and systems engineering for human systems integration. In Complex systems design & management, pp 151–162, Springer International Publishing. https://doi.org/10.1007/978-3-319-02812-5_12

  • Bitonneau D (2018) Conception de systèmes cobotiques industriels : approche robotique avec prise en compte des facteurs humains : application à l’industrie manufacturière au sein de safran et arianegroup. PhD thesis: automatic/robotics. University of Bordeaux, French. https://tel.archives-ouvertes.fr/tel-01897527

  • Bobillier-Chaumon M-E (2016) L’acceptation située des technologies dans et par l’activité : premiers étayages pour une clinique de l’usage. Psychologie du travail et des organisations, elsevier masson, 22 (1). https://doi.org/10.1016/j.pto.2016.01.001

  • Boehm BW (1981) Software engineering economics. Prentice-hall, englewood cliffs, nj.

  • Boehm BW, gray te and seewaldt t (1984) prototyping versus specifying: a multiproject experiment. IEEE trans. Software eng., se-10(3):290–303, may.

  • Bordel S, Somat A, Hervé B, Anceaux F, Greffeuille C, Menguy G, Pacaux M-P, Subirat P,Terrade F, Gallenne M-L (2014) From technological acceptability to appropriation by users: Methodological steps for device assessment in road safety.Accident Analysis & Prevention Volume 67, June 2014, pp 159–165. https://doi.org/10.1016/j.aap.2014.01.016

  • Brooke (1996) SUS: a "quick and dirty" usability scale. In p.w. Jordan, b. Thomas, b.a.weerdmeester & i. Mcclelland (eds.), usability evaluation in industry, pp. 189–194. London: taylor & francis.

  • Brooke J (2013) Sus: a retrospective. J Usability Stud 8(2):29–40

    Google Scholar 

  • Brown T, Barry K (2011) Change by design. J Prod Innov Manag 28:381–383. https://doi.org/10.1111/j.1540-5885.2011.00806.x

    Article  Google Scholar 

  • Buur J, Astrid S (2000) Video card game: an augmented environment for user centred design discussions. In: Proceedings of DARE 2000 on Designing augmented reality environments (DARE '00). Association for Computing Machinery, New York, NY, USA, pp 63–69. https://doi.org/10.1145/354666.354673

  • Caffiau S (2009) Approche dirigée par les modèles pour la conception et la validation des applications interactives : une démarche basée sur la modélisation des tâches. Informatique [cs]. Isae-ensma ecole nationale supérieure de mécanique et d’aérotechique—Poitiers. Français. https://tel.archives-ouvertes.fr/tel-00461497

  • Chellali A (2009) Etude des interactions homme-homme pour l’élaboration du référentiel commun dans les environnements virtuels collaboratifs. Interface homme-machine [cs.hc]. PhD thesis, University of Nantes, French. https://tel.archives-ouvertes.fr/tel-00467441v2

  • Clarke AA, Smyth MGG (1993) A co-operative computer based on the principles of human co-operation. Int J Man-Machine Studies 38:3–22. https://doi.org/10.1006/imms.1993.1002

    Article  Google Scholar 

  • Clot Y (1995) Le travail sans l’homme ? Pour une psychologie des milieux de travail et de vie. Second edition, 1998. Paris : la découverte.

  • Colgate J.E and Peshkin M.A (1999) Cobots, US5952796A.

  • Coutaz J (1987) PAC an implementation model for the user interface. IFIP TC13 human-computer interaction (interact'87), Stuttgart-North-Holland, pp. 431–436.

  • Curtis B, Hefley B (1994) a wimp no more, the maturing of user interface engineering. Interactions 1(1):22–34. https://doi.org/10.1145/174800.174803

    Article  Google Scholar 

  • Daniellou F (1987) Les modalités d’une ergonomie de conception, son introduction dans la conduite des projets industriels. Documentary note nd 1647- 129–87, Paris: INRS.

  • Davis FD (1989) Perceived usefulness, perceived ease of use, and user acceptance of information technology. Mis q 13(3):319–340. https://doi.org/10.2307/249008

    Article  Google Scholar 

  • Directive 2006/42/EC of the european parliament and of the council of 17 May 2006 on machinery, and amending Directive 95/16/EC (recast)

  • Deutsch Morton (1962) Cooperation and trust: some theoretical notes.nebraska symposium on motivation, Lincoln, ne: university of Nebraska press, pp 275–319. https://PSYCNET.APA.ORG/RECORD/1964-01869-002

  • Dishaw M-T, Strong D-M (1999) Extending the technology acceptance model with task–technology fit constructs. Information Manag 36(1):9–21. https://doi.org/10.1016/s0378-7206(98)00101-3

    Article  Google Scholar 

  • Doll WJ, Torkzadeh G (1988) The measurement of end-user computing satisfaction. MIS Q 12:259–272. https://doi.org/10.2307/248851

    Article  Google Scholar 

  • Flemisch F-O, Bengler K, Winner H, Bruder R (2014) Towards a cooperative guidance and control of highly automated vehicles: H-mode and conduct-by-wire. Ergonomics 57(3):343–360. https://doi.org/10.1080/00140139.2013.869355

    Article  Google Scholar 

  • Finstad K (2010) The usability metric for user experience. Interact Comput 22(5):323–327. https://doi.org/10.1016/j.intcom.2010.04.004

    Article  Google Scholar 

  • Fitts D, Sandor A, Litaker H, Tillman Jr. B. (2008) Human Factors in Human Systems Integration. Houston, TX: NASA Johnson Space Center. Google Scholar

  • Fontmarty M, Germa T, Burger B, Marin L-F, Knoop S (2007) Implementation of human perception algorithms on a mobile robot. IFAC Proc 40(15):361–366. https://doi.org/10.3182/20070903-3-fr-2921.00062

    Article  Google Scholar 

  • Garrigou A, Daniellou F, Carballeda G, Ruaud S (1995) Activity analysis in participatory design and analysis of participatory design activity. Int J Ind Ergon 15:311–327

    Article  Google Scholar 

  • Garrigou A, Carballeda G, Daniellou F (1994) The contribution of activity analysis to the understanding of maintenance difficulties in high-risk process control plant. Aghazadeh F, advances in industrial ergonomics and safety VI. Taylor & Francis, London, pp 199–206

    Google Scholar 

  • Garrigou A, Thibault J-F, Jackson M, Mascia F (2001) Contributions et démarche de l’ergonomie dans les processus de conception. Pistes, 3(2): 1–20. https://journals.openedition.org/pistes/3725

  • Goodhue D.L, Thompson L (1995) Task-technology fit and individual performance. Mis quarterly 213-236. He, w., qiao, q., & wei, k.-k. (2009). Social relationship and its role in knowledge management systems usage. Information & management, 46(3), pp 175–180

  • Guerin F, Laville A, Daniellou F, Duraffourg J, Kergelen A (1991) Comprendre le travail pour le transformer. Anact : Montrouge.

  • Guide de prévention à destination des fabricants et des utilisateurs pour la mise en œuvre des applications collaboratives robotisées 2017. Ministry of Labour, edition 2017, France. https://travail-emploi.gouv.fr/img/pdf/guide_de_prevention_25_aout_2017.pdf. Accessed 30 september 2019.

  • Hartson HR, Boehm D (1993) User interface development processes and methodologies. Behav Info Technol 12(2):98–114. https://doi.org/10.1080/01449299308924371

    Article  Google Scholar 

  • Hix D (1995) Usability evaluation: how does it relate to software engineering? In symbiosis of human and artifact: human and social aspects of human-computer inter-action, y. Anzai, k. Ogawa and h. Mori (eds.), amsterdam: elsevier science, pp 355–360. https://doi.org/10.1016/s0921-2647(06)80242-x

  • Hix D, Hartson HR (1993) Developing user interfaces: ensuring usability through product and process. Wiley, New York

    MATH  Google Scholar 

  • Hoc J-M, Lemoine M-P (1998) Cognitive evaluation of human-human and human-machine cooperation modes in air traffic control. Int J Aviation Psychol 8(1):1–32

    Article  Google Scholar 

  • Hord S (1981) Working together: Cooperation or collaboration. Austin: University of Texas at Austin, Research and Development Center for Teacher Education. ERIC Document Reproduction Service, no. ED 226 450

  • Hubault F, Langa P, Melier B (1997) Les questions industrielles changent: l’ergonomie peut-elle y répondre sans revenir sur certains concepts? Proceedings XXXII congrès de la SELF. Lyon-France

  • INRS (2018) Robots collaboratifs- Risques. Accessed October 20, 2020: http://www.inrs.fr/risques/robots-collaboratifs/ce-qu-il-faut-retenir.html

  • ISO 10218–1 (2011) Robots and robotic devices. Safety requirements for industrial robots, Part 1: Robots

  • ISO 10218–2 (2011) Robots and robotic devices. Safety requirements for industrial robots, Part 2: Robot systems and integration

  • ISO 8373 (2012) Robots and robotic devices: Vocabulary

  • ISO 9241–11 (2015) Ergonomics of Human-System Interaction—part 11: usability: Definitions and concepts

  • ISO 9241–210 (2010) Ergonomics of Human-System Interaction, part 210: Human-centred design for interactive systems. Geneva: international organization standardization

  • ISO/TS 15066 (2016) Robots and robotic devices: collaborative robots

  • Jahani H, Kavakli M (2018) Exploring a user-defined gesture vocabulary for descriptive mid-air interactions. Cogn Tech Work (2018) 20(11). https://doi.org/10.1007/s10111-017-0444-0

  • Jones B (1983) Division of labour and distribution of tacit knowledge in the automation of metal machining. Proceedings of IFAC Congres: Design of Work in Automated Manufactoring System, Karlsruhe, pp 19–22. https://doi.org/10.1016/s1474-6670(17)61548-9

  • Kiss M, Schmidt G and Babbel E 2008 Das Wizard of Oz Fahrzeug: ein Werkzeug für Rapid Prototyping and Usability Testing von zukünftigen Fahrer assistenz systemen. In: Proceedings of 3. Tagung Aktive Sicherheit durch Fahrerassistenz, April 7–8, Garching-Germany

  • Kolski C (1995) Méthodes et modèles de conception et d’évaluation des interfaces homme-machine. Interface homme-machine. Phd thesis, University of Valenciennes and Hainaut-Cambresis. https://tel.archives-ouvertes.fr/tel-01300869

  • Kozar O (2010) Towards better group work: seeing the difference between cooperation and collaboration. English Teaching Forum 2:16–23

    Google Scholar 

  • Kuli´C, Croft E (2007) Affective state estimation for human-robot interaction. IEEE transactions on robotics, 23(5): 991–1000

  • Lewis JR (1995) IBM computer usability satisfaction questionnaires: psychometric evaluation and instructions for use. Int J Hum Comput Interactions 7:57–78. https://doi.org/10.1080/10447319509526110

    Article  Google Scholar 

  • Maline J (1994) Simuler le travail. Editions de l’ANACT, Lyon-France

  • Marx K (1867) Capital: A critique of political economy. Volume 1, Part 1: The process of capitalist production, New York: Cosimo

  • Mathieu F, Hillen V (2016) Le design thinking par la pratique, de la rencontre avec l’utilisateur à la commercialisation d’un produit innovant pour les seniors. Eyrolles, ISBN: 978-2-212-*14385–0

  • Maurice P, Padois P, Measson Y, Bidaud, P (2017) Human-oriented design of collaborative robots. International journal of industrial ergonomics, Elsevier, 57, pp.88-102. https://hal.archives-ouvertes.fr/hal-01428778

  • Mavridis N (2014) A review of verbal and non-verbal human-robot interactive communication. Interactive robots and media lab, ncsr demokritos gr-15310, agia paraskevi, Athens, Greece. https://doi.org/10.1016/j.robot.2014.09.031

  • Moulieres-Seban T (2017) Conception de systèmes cobotiques industriels : approche Cognitique : application à la production pyrotechnique au sein d’Ariane group. Phd thesis, University of Bordeaux, French. https://tel.archives-ouvertes.fr/tel-01697610

  • Norman D, Draper S (1986) User Centered System Design; New Perspectives on Human-Computer Interaction.L. Erlbaum Associates Inc. Hillsdale, NJ, USA ©1986. ISBN:0898597811

  • Pacaux-Lemoine M.-P, Debernard S, Godin, A, Rajaonah B, Anceaux F and Vanderhaegen F (2011) Levels of automation and human-machine cooperation: application to human-robot interaction. In:Proceedings of the 18th IFAC World Congress, Milano (Italy) August 28—September 2, 2011, pp 6484–6492

  • Pacaux-Lemoine M-P, Trentesaux D, Zambrano Rey G, Millot P (2017) Designing intelligent manufacturing systems through human-machine cooperation principles: a human-centered approach. Comput Ind Eng 111:581–595. https://doi.org/10.1016/j.cie.2017.05.014

    Article  Google Scholar 

  • Pacaux-Lemoine M-P, Vanderhaegen V (2013) Towards levels of cooperation. Proc IEEE Int Conf Syst Man Cyberne SMC 2013:291–296. https://doi.org/10.1109/SMC.2013.56

    Article  Google Scholar 

  • Parasuraman R, Sheridan T-B and Wickens C-D (2000) A model for types and levels of human interaction with automation. IEEE transactions on systems, man, and cybernetics. Part A, Systems and Humans: a publication of the IEEE systems, man and cybernetics society, 30(3), pp 286–297

  • Patle BK, Babu LG, Pandey A, Parhi DRK, Jagadeesh A (2019) A review: on path planning strategies for navigation of mobile robot. Def Technol. https://doi.org/10.1016/j.dt.2019.04.011

    Article  Google Scholar 

  • Pavard B (1994) Systèmes coopératifs : de la modélisation à la conception

  • Piçarraa N, Gigerab J-C (2018) Predicting intention to work with social robots at anticipation stage: assessing the role of behavioral desire and anticipated emotions computers in human behavior: volume 86, pp 129–146 https://doi.org/10.1016/j.chb.2018.04.026

  • Quiguer S (2013) Acceptabilité, acceptation et appropriation des systèmes de transport intelligents : élaboration d’un canevas de co-conception multidimensionnelle orientée par l’activité. Psychologie. Phd thesis, University of Rennes 2, French. https://tel.archives-ouvertes.fr/tel-00790392

  • Rasmussen J (1987) Information processing and human-machine interaction. An approach to cognitive engineering. North-Holland Series in System Science and Engineering, 12

  • Riahi M (2004) Contribution à l’élaboration d’une méthodologie de spécification, de vérification et de génération semi-automatique d’interfaces homme-machine : application à l’outil ergo-conceptor+. Informatique. Phd thesis, University of valenciennes and Hainaut-Cambrésis, French. https://hal.archives-ouvertes.fr/tel-01920101

  • Salas E, Prince C, Baker D-P, Shrestha L (1995) Situation awareness in team performance: implications for measurement and training. Hum Factors 37(1):123–136. https://doi.org/10.1518/00187209577904955

    Article  Google Scholar 

  • Shu Y, Furuta K (2005) An inference method of team situation awareness based on mutual awareness. Cogn Tech Work 7:272–287. https://doi.org/10.1007/s10111-005-0012-x

    Article  Google Scholar 

  • Sheridan TB (2002) Humans and automation: system design and research issues. Hum Factors & Ergonomics Society & Wiley, New York

    Google Scholar 

  • Schieben A, Heesen M, Schindler J, Kelsch J and Flemisch F (2009) The theater-system technique: agile designing and testing of system behavior and interaction, applied to highly automated vehicles. Proceedings of the 1st International Conference on Automotive User Interfaces and Interactive Vehicular Applications, AutomotiveUI, pp 43–46. https://doi.org/10.1145/1620509.1620517

  • Subrin K, Muller T, Ojeda IDJG, Garnier S, Meriau B, Furet B (2019) Cobotisation d’opérations de polissage de pièces composites de grandes dimensions. Proceedings of the 16th S-mart colloque, Les Karellis-France

  • Taizo M, Saiko I, Takashi F (2017) Human robot communication with facilitators for care robot innovation. Proceedings of the International Conference on Knowledge Based and Intelligent Information and Engineering Systems (2017), 6–8 september 2017, Marseille-France

  • Terveen LG (1994) An overview of human-computer collaboration. Knowl-Based Syst J Special Issue Hum-Comput Collaboration 8(2–3):67–81

    Google Scholar 

  • The bootcamp bootleg (2013). https://dschool.stanford.edu/use-our-methods/. Accessed 30 september 2019.

  • Theureau J, Pinsky P (1984) Paradoxe de l’ergonomie de conception et logiciel informatique. Revue Des Conditions De Travail 9:25–31

    Google Scholar 

  • Theurel J, Atain-Kouadio J-J, Desbrosses K, Kerangueven L, Duva C (2018) 10 idées reçues sur les exosquelette, INRS.

  • Trentesaux D, Millot P (2016) A Human-Centred Design to Break the Myth of the “Magic Human” in Intelligent Manufacturing Systems. In: Borangiu T, Trentesaux D, Thomas A, McFarlane D (eds) Service Orientation in Holonic and Multi-Agent Manufacturing. Studies in Computational Intelligence, vol 640. Springer, Cham. https://doi.org/10.1007/978-3-319-30337-6_10

  • Vanderhaegen F (2012) Cooperation and learning to increase the autonomy of ADAS. Cogn Tech Work 14:61–69. https://doi.org/10.1007/s10111-011-0196-1

    Article  Google Scholar 

  • Millot P (1988) Supervision des procédés automatisés et ergonomie. Éditions Hermes, Paris

    Google Scholar 

  • Millot P, Roussillon E, Man-Machine Cooperation in Telerobotics: Problematics and Methodologies, Proceedings Second France Israël Symposium on Robotics, Institut National des Sciences et Techniques Nucléaires, Gif sur Yvette, Avril 1991.

  • https://go.usabilla.com/hubfs/ebook_usabilla_ux_fundamentals_interaction_design.pdf?t=1512657086734. Accessed 30 september 2019.

  • Wang J, Senecal S (2007) Measuring perceived website usability. Journal of Internet Commerce 6(4):97–112. https://doi.org/10.1080/15332860802086318

    Article  Google Scholar 

  • Weistroffer V, Paljic A Fuchs P, Hugues O, Chodacki J-P, et al (2014) Assessing the acceptability of human-robot co-presence on assembly lines: a comparison between actual situations and their virtual reality counterparts. In: 23rd IEEE international symposium on robot and human interactive communication (roman), Aug 2014, Edinburgh, United Kingdom. https://hal-mines-paristech.archives-ouvertes.fr/hal-01079580

  • Wever R, Van Kuijk J, Casper B (2008) User-centred design for sustainable behavior. Int J Sustain Eng 1(1):9–20. https://doi.org/10.1080/19397030802166205

    Article  Google Scholar 

  • Wioland L, Debay L, Atain-Kouadio JJ (2019) Acceptation des exosquelettes par les opérateurs : étude exploratoire, Men at work department, INRS, March 2019, References in Work Health No. 157. http://www.rst-sante-travail.fr/rst/dms/dmt/articledmt/vuduterrain/ti-rst-tf-264/tf264.pdf . Accessed 30 september 2019.

  • Zhang Z, Vanderhaegen F, Millot P (2006) Prediction of Human Behaviour Using Artificial Neural Networks. In: Yeung DS, Liu ZQ, Wang XZ., Yan H (eds) Advances in Machine Learning and Cybernetics. Lecture Notes in Computer Science, vol 3930. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11739685_80

Download references

Acknowledgements

This work has been supported by the French National Research Agency (ANR) as part of the research project HECTTOR: Humans Committed to Organisations and Work Transformations in the « Factories of the Future » through cobotisation—(ANR-17-CE10-0011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mouad Bounouar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bounouar, M., Bearee, R., Siadat, A. et al. On the role of human operators in the design process of cobotic systems. Cogn Tech Work 24, 57–73 (2022). https://doi.org/10.1007/s10111-021-00691-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10111-021-00691-y

Keywords

Navigation