Skip to main content

Advertisement

Log in

Influence of Er:YAG laser irradiation on surface properties of Ti-6Al-4V machined and hydroxyapatite coated

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Surface treatment by laser irradiation can change the topography of titanium; however, little is known about the changes it causes when applied to other coatings. This study aimed to evaluate the influence of Er:YAG laser irradiation on the surface properties of titanium-aluminum-vanadium (Ti-6Al-4V) discs. Four Ti-6Al-4V surfaces were evaluated (n = 10): CON—control, machined without surface treatment; LT—machined + laser treatment; HA—hydroxyapatite coating; and LT-HA—hydroxyapatite coating + laser treatment. For the laser treatment, an Er:YAG laser with a wavelength of 2940 nm, a frequency of 10 Hz, and an energy density of 12.8 J/cm2 was used. The morphology of the coating was investigated by scanning electron microscopy and the surface composition by energy-dispersive X-ray spectroscopy. The influence of laser irradiation treatment on roughness and wettability was also evaluated. The Er:YAG laser promoted a significant reduction in the roughness Sa (p < 0.05) and in the contact angle (p = 0.002) of the LT surface compared to the CON surface. On the LT-HA surface, a significant decrease in roughness was observed only for the Rz parameter (p = 0.015) and an increase in the contact angle (p < 0.001) compared to the HA surface. The use of the Er:YAG laser with the evaluated parameters decreased the surface roughness and improved the wetting capacity of machined without surface treatment. In the group with hydroxyapatite coating, the laser influenced the surface roughness only for the parameter Rz and reduced their wetting capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Safi IN, Hussein BMA, Al Shammari AM, Tawfiq TA (2019) Implementation and characterization of coating pure titanium dental implant with sintered β-TCP by using Nd:YAG laser. Saudi Dent J 31:242–250. https://doi.org/10.1016/j.sdentj.2018.12.004

    Article  PubMed  PubMed Central  Google Scholar 

  2. Tiainen L, Abreu P, Buciumeanu M et al (2019) Novel laser surface texturing for improved primary stability of titanium implants. J Mech Behav Biomed Mater 98:26–39. https://doi.org/10.1016/j.jmbbm.2019.04.052

    Article  CAS  PubMed  Google Scholar 

  3. Simões IG, dos Reis AC, da Costa Valente ML (2021) Analysis of the influence of surface treatment by high-power laser irradiation on the surface properties of titanium dental implants: a systematic review. J Prosthet Dent. https://doi.org/10.1016/j.prosdent.2021.07.026

  4. Cura AC, Zuchuat JI, Tribbia LT et al (2022) Sandblasted, acid etched and UV irradiated titanium surface for dental implants: in vitro and in vivo analysis. Materialia (Oxf) 21:101302. https://doi.org/10.1016/j.mtla.2021.101302

    Article  CAS  Google Scholar 

  5. Souza JCM, Sordi MB, Kanazawa M et al (2019) Nano-scale modification of titanium implant surfaces to enhance osseointegration. Acta Biomater 94:112–131. https://doi.org/10.1016/j.actbio.2019.05.045

    Article  CAS  PubMed  Google Scholar 

  6. Yu Z, Yang G, Zhang W, Hu J (2018) Investigating the effect of picosecond laser texturing on microstructure and biofunctionalization of titanium alloy. J Mater Process Technol 255:129–136. https://doi.org/10.1016/j.jmatprotec.2017.12.009

    Article  CAS  Google Scholar 

  7. Łęcka KM, Gąsiorek J, Mazur-Nowacka A et al (2019) Adhesion and corrosion resistance of laser-oxidized titanium in potential biomedical application. Surf Coat Technol 366:179–189. https://doi.org/10.1016/j.surfcoat.2019.03.032

    Article  CAS  Google Scholar 

  8. Rafiee K, Naffakh-Moosavy H, Tamjid E (2020) The effect of laser frequency on roughness, microstructure, cell viability and attachment of Ti6Al4V alloy. Mater. Sci. Eng. C 109:110637. https://doi.org/10.1016/j.msec.2020.110637

    Article  CAS  Google Scholar 

  9. Menci G, Demir AG, Waugh DG et al (2019) Laser surface texturing of β-Ti alloy for orthopaedics: effect of different wavelengths and pulse durations. Appl Surf Sci 489:175–186. https://doi.org/10.1016/j.apsusc.2019.05.111

    Article  CAS  Google Scholar 

  10. Lee BEJ, Exir H, Weck A, Grandfield K (2018) Characterization and evaluation of femtosecond laser-induced sub-micron periodic structures generated on titanium to improve osseointegration of implants. Appl Surf Sci 441:1034–1042. https://doi.org/10.1016/j.apsusc.2018.02.119

    Article  CAS  Google Scholar 

  11. Gnilitskyi I, Pogorielov M, Viter R et al (2019) Cell and tissue response to nanotextured Ti6Al4V and Zr implants using high-speed femtosecond laser-induced periodic surface structures. Nanomedicine 21:102036. https://doi.org/10.1016/j.nano.2019.102036

    Article  CAS  PubMed  Google Scholar 

  12. Frostevarg J, Olsson R, Powell J et al (2019) Formation mechanisms of surfaces for osseointegration on titanium using pulsed laser spattering. Appl Surf Sci 485:158–169. https://doi.org/10.1016/j.apsusc.2019.04.187

    Article  CAS  Google Scholar 

  13. Sadeghi M, Kharaziha M, Salimijazi HR, Tabesh E (2019) Role of micro-dimple array geometry on the biological and tribological performance of Ti6Al4V for biomedical applications. Surf Coat Technol 362:282–292. https://doi.org/10.1016/j.surfcoat.2019.01.113

    Article  CAS  Google Scholar 

  14. Luo X, Yao S, Zhang H et al (2020) Biocompatible nano-ripples structured surfaces induced by femtosecond laser to rebel bacterial colonization and biofilm formation. Opt Laser Technol 124:105973. https://doi.org/10.1016/j.optlastec.2019.105973

    Article  CAS  Google Scholar 

  15. Medvids A, Onufrijevs P, Kaupužs J et al (2021) Anatase or rutile TiO2 nanolayer formation on Ti substrates by laser radiation: mechanical, photocatalytic and antibacterial properties. Opt Laser Technol 138:106898. https://doi.org/10.1016/j.optlastec.2020.106898

    Article  CAS  Google Scholar 

  16. Tsai M-H, Haung C-F, Shyu S-S et al (2015) Surface modification induced phase transformation and structure variation on the rapidly solidified recast layer of titanium. Mater Charact 106:463–469. https://doi.org/10.1016/j.matchar.2015.06.004

    Article  CAS  Google Scholar 

  17. Khoo LK, Sakdajeyont W, Khanijou M et al (2019) Titanium fixture implants treated by laser in dentistry: review article. J Oral Maxillofac Surg Med Pathol 31:381–385. https://doi.org/10.1016/j.ajoms.2019.08.001

    Article  Google Scholar 

  18. Stango SAX, Karthick D, Swaroop S et al (2018) Development of hydroxyapatite coatings on laser textured 316 LSS and Ti-6Al-4V and its electrochemical behavior in SBF solution for orthopedic applications. Ceram Int 44:3149–3160. https://doi.org/10.1016/j.ceramint.2017.11.083

    Article  CAS  Google Scholar 

  19. Behera RR, Hasan A, Sankar MR, Pandey LM (2018) Laser cladding with HA and functionally graded TiO2-HA precursors on Ti–6Al–4V alloy for enhancing bioactivity and cyto-compatibility. Surf Coat Technol 352:420–436. https://doi.org/10.1016/j.surfcoat.2018.08.044

    Article  CAS  Google Scholar 

  20. Lin Z, Strauss FJ, Lang NP et al (2021) Efficacy of laser monotherapy or non-surgical mechanical instrumentation in the management of untreated periodontitis patients. A systematic review and meta-analysis. Clin Oral Investig 25:375–391. https://doi.org/10.1007/s00784-020-03584-y

    Article  PubMed  Google Scholar 

  21. Miranda G, Sousa F, Costa MM et al (2019) Surface design using laser technology for Ti6Al4V-hydroxyapatite implants. Opt Laser Technol 109:488–495. https://doi.org/10.1016/j.optlastec.2018.08.034

    Article  CAS  Google Scholar 

  22. Fathi AM, Ahmed MK, Afifi M et al (2021) Taking hydroxyapatite-coated titanium implants two steps forward: surface modification using graphene mesolayers and a hydroxyapatite-reinforced polymeric scaffold. ACS Biomater Sci Eng 7:360–372. https://doi.org/10.1021/acsbiomaterials.0c01105

    Article  CAS  PubMed  Google Scholar 

  23. Pires LC, Guastaldi FPS, Nogueira AVB et al (2019) Physicochemical, morphological, and biological analyses of Ti-15Mo alloy surface modified by laser beam irradiation. Lasers Med Sci 34:537–546. https://doi.org/10.1007/s10103-018-2626-2

    Article  PubMed  Google Scholar 

  24. Faria D, Abreu CS, Buciumeanu M et al (2018) Ti6Al4V laser surface preparation and functionalization using hydroxyapatite for biomedical applications. J Biomed Mater Res B Appl Biomater 106:1534–1545. https://doi.org/10.1002/jbm.b.33964

    Article  CAS  PubMed  Google Scholar 

  25. dos Santos ML, dos Santos RC, de Almeida FE, Guastaldi AC (2018) Calcium phosphates of biological importance based coatings deposited on Ti-15Mo alloy modified by laser beam irradiation for dental and orthopedic applications. Ceram Int 44:22432–22438. https://doi.org/10.1016/j.ceramint.2018.09.010

    Article  CAS  Google Scholar 

  26. Raimbault O, Benayoun S, Anselme K et al (2016) The effects of femtosecond laser-textured Ti-6Al-4V on wettability and cell response. Materials Science and Engineering: C 69:311–320. https://doi.org/10.1016/j.msec.2016.06.072

    Article  CAS  PubMed  Google Scholar 

  27. Cunha A, Serro AP, Oliveira V et al (2013) Wetting behaviour of femtosecond laser textured Ti–6Al–4V surfaces. Appl Surf Sci 265:688–696. https://doi.org/10.1016/j.apsusc.2012.11.085

    Article  CAS  Google Scholar 

  28. Ayobian-Markazi N, Karimi M, Safar-Hajhosseini A (2015) Effects of Er: YAG laser irradiation on wettability, surface roughness, and biocompatibility of SLA titanium surfaces: an in vitro study. Lasers Med Sci 30:561–566. https://doi.org/10.1007/s10103-013-1361-y

    Article  PubMed  Google Scholar 

  29. Jiang J, Han G, Zheng X et al (2019) Characterization and biocompatibility study of hydroxyapatite coating on the surface of titanium alloy. Surf Coat Technol 375:645–651. https://doi.org/10.1016/j.surfcoat.2019.07.067

    Article  CAS  Google Scholar 

  30. Ke D, Vu AA, Bandyopadhyay A, Bose S (2019) Compositionally graded doped hydroxyapatite coating on titanium using laser and plasma spray deposition for bone implants. Acta Biomater 84:414–423. https://doi.org/10.1016/j.actbio.2018.11.041

    Article  CAS  PubMed  Google Scholar 

  31. Jing Z, Cao Q, Jun H (2021) Corrosion, wear and biocompatibility of hydroxyapatite bio-functionally graded coating on titanium alloy surface prepared by laser cladding. Ceram Int 47:24641–24651. https://doi.org/10.1016/j.ceramint.2021.05.186

    Article  CAS  Google Scholar 

  32. Li HC, Wang DG, Hu C et al (2021) Effect of Na2O and ZnO on the microstructure and properties of laser cladding derived CaO-SiO2 ceramic coatings on titanium alloys. J Colloid Interface Sci 592:498–508. https://doi.org/10.1016/j.jcis.2021.02.064

    Article  CAS  PubMed  Google Scholar 

  33. Park C-Y, Kim S-G, Kim M-D et al (2005) Surface properties of endosseous dental implants after NdYAG and CO2 laser treatment at various energies. J. Maxillofac. Surg. 63:1522–1527. https://doi.org/10.1016/j.joms.2005.06.015

    Article  Google Scholar 

  34. Huang P, Chen X, Chen Z et al (2021) Efficacy of Er:YAG laser irradiation for decontamination and its effect on biocompatibility of different titanium surfaces. BMC Oral Health 21:649. https://doi.org/10.1186/s12903-021-02006-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shin S-I, Lee E-K, Kim J-H et al (2013) The effect of Er:YAG laser irradiation on hydroxyapatite-coated implants and fluoride-modified TiO2-blasted implant surfaces: a microstructural analysis. Lasers Med Sci 28:823–831. https://doi.org/10.1007/s10103-012-1162-8

    Article  PubMed  Google Scholar 

  36. de Souza ID, Cruz MAE, de Faria AN et al (2014) Formation of carbonated hydroxyapatite films on metallic surfaces using dihexadecyl phosphate–LB film as template. Colloids Surf B Biointerfaces 118:31–40. https://doi.org/10.1016/j.colsurfb.2014.03.029

    Article  CAS  PubMed  Google Scholar 

  37. Tas AC (2000) Synthesis of biomimetic Ca-hydroxyapatite powders at 37°C in synthetic body fluids. Biomaterials 21:1429–1438. https://doi.org/10.1016/S0142-9612(00)00019-3

    Article  CAS  PubMed  Google Scholar 

  38. Katahira K, Ezura A, Ohkawa K et al (2016) Generation of bio-compatible titanium alloy surfaces by laser-induced wet treatment. CIRP Annals 65:237–240. https://doi.org/10.1016/j.cirp.2016.04.053

    Article  Google Scholar 

  39. Baloyi NM, Popoola API, Pityana SL (2015) Microstructure, hardness and corrosion properties of laser processed Ti6Al4V-based composites. Trans. Nonferrous Met. Soc. China 25:2912–2923. https://doi.org/10.1016/S1003-6326(15)63917-6

    Article  CAS  Google Scholar 

  40. Lin X, Li X, Li G et al (2020) Micro-dot-matrix induced by femtosecond laser on titanium surface for Ca-P phase deposition. Appl Surf Sci 499:143925. https://doi.org/10.1016/j.apsusc.2019.143925

    Article  CAS  Google Scholar 

  41. Ciganovic J, Stasic J, Gakovic B et al (2012) Surface modification of the titanium implant using TEA CO2 laser pulses in controllable gas atmospheres – comparative study. Appl Surf Sci 258:2741–2748. https://doi.org/10.1016/j.apsusc.2011.10.125

    Article  CAS  Google Scholar 

  42. Milovanović DS, Radak BB, Gaković BM et al (2010) Surface morphology modifications of titanium based implant induced by 40picosecond laser pulses at 266nm. J Alloys Compd 501:89–92. https://doi.org/10.1016/j.jallcom.2010.04.047

    Article  CAS  Google Scholar 

  43. Ruiz GCM, Cruz MAE, Faria AN et al (2017) Biomimetic collagen/phospholipid coatings improve formation of hydroxyapatite nanoparticles on titanium. Mater. Sci. Eng. C 77:102–110. https://doi.org/10.1016/j.msec.2017.03.204

    Article  CAS  Google Scholar 

  44. Wang Q, Ding C, Zhou Y et al (2018) Universal and biocompatible hydroxyapatite coating induced by phytic acid-metal complex multilayer. Colloids Surf B Biointerfaces 169:478–485. https://doi.org/10.1016/j.colsurfb.2018.05.057

    Article  CAS  PubMed  Google Scholar 

  45. Yang J, Zhang K, Que K et al (2018) Surface modification of titanium with hydroxyapatite layer induced by phase-transited lysozyme coating. Mater. Sci. Eng. C 92:206–215. https://doi.org/10.1016/j.msec.2018.05.055

    Article  CAS  Google Scholar 

  46. Stubinger S, Etter C, Miskiewicz M et al (2010) Surface alterations of polished and sandblasted and acid-etched titanium implants after Er:YAG, carbon dioxide, and diode laser irradiation. Int J Oral Maxillofac Implants 25:104–111

    PubMed  Google Scholar 

  47. Lee J-H, Kwon Y-H, Herr Y et al (2011) Effect of erbium-doped: yttrium, aluminium and garnet laser irradiation on the surface microstructure and roughness of sand-blasted, large grit, acid-etched implants. J Periodontal Implant Sci 41:135. https://doi.org/10.5051/jpis.2011.41.3.135

    Article  PubMed  PubMed Central  Google Scholar 

  48. Jaritngam P, Tangwarodomnukun V, Qi H, Dumkum C (2020) Surface and subsurface characteristics of laser polished Ti6Al4V titanium alloy. Opt Laser Technol 126:106102. https://doi.org/10.1016/j.optlastec.2020.106102

    Article  CAS  Google Scholar 

  49. Andrukhov O, Huber R, Shi B et al (2016) Proliferation, behavior, and differentiation of osteoblasts on surfaces of different microroughness. Dent. Mater. J. 32:1374–1384. https://doi.org/10.1016/j.dental.2016.08.217

    Article  CAS  Google Scholar 

  50. Wennerberg A, Albrektsson T (2009) Effects of titanium surface topography on bone integration: a systematic review. Clin Oral Implants Res 20:172–184. https://doi.org/10.1111/j.1600-0501.2009.01775.x

    Article  PubMed  Google Scholar 

  51. Yang Y, Serpersu K, He W et al (2011) Osteoblast interaction with laser cladded HA and SiO2-HA coatings on Ti–6Al–4V. Mater. Sci. Eng. C 31:1643–1652. https://doi.org/10.1016/j.msec.2011.07.009

    Article  CAS  Google Scholar 

  52. Chien CS, Liao TY, Hong TF et al (2011) Investigation into microstructural properties of fluorapatite Nd-YAG laser clad coatings with PVA and WG binders. Surf Coat Technol 205:3141–3146. https://doi.org/10.1016/j.surfcoat.2010.11.028

    Article  CAS  Google Scholar 

  53. dos Santos LCP, Malheiros FC, Guarato AZ (2020) Surface parameters of as-built additive manufactured metal for intraosseous dental implants. J Prosthet Dent 124:217–222. https://doi.org/10.1016/j.prosdent.2019.09.010

    Article  CAS  PubMed  Google Scholar 

  54. Almas K, Smith S, Kutkut A (2019) What is the best micro and macro dental implant topography? Dent Clin North Am 63:447–460. https://doi.org/10.1016/j.cden.2019.02.010

    Article  PubMed  Google Scholar 

  55. Huo F, Guo W, Wu H et al (2018) Fabrication of biomimetic resorption lacunae-like structure on titanium surface and its osteoblast responses. Appl Surf Sci 436:11–21. https://doi.org/10.1016/j.apsusc.2017.11.282

    Article  CAS  Google Scholar 

  56. Medvedev AE, Ng HP, Lapovok R et al (2016) Effect of bulk microstructure of commercially pure titanium on surface characteristics and fatigue properties after surface modification by sand blasting and acid-etching. J Mech Behav Biomed Mater 57:55–68. https://doi.org/10.1016/j.jmbbm.2015.11.035

    Article  CAS  PubMed  Google Scholar 

  57. Butt A, Hamlekhan A, Patel S et al (2015) A novel investigation of the formation of titanium oxide nanotubes on thermally formed oxide of Ti-6Al-4V. J Oral Implantol 41:523–531. https://doi.org/10.1563/AAID-JOI-D-13-00340

    Article  PubMed  Google Scholar 

  58. Alves SA, Patel SB, Sukotjo C et al (2017) Synthesis of calcium-phosphorous doped TiO2 nanotubes by anodization and reverse polarization: a promising strategy for an efficient biofunctional implant surface. Appl Surf Sci 399:682–701. https://doi.org/10.1016/j.apsusc.2016.12.105

    Article  CAS  Google Scholar 

  59. Ferraris S, Vitale A, Bertone E et al (2016) Multifunctional commercially pure titanium for the improvement of bone integration: multiscale topography, wettability, corrosion resistance and biological functionalization. Mater. Sci. Eng. C 60:384–393. https://doi.org/10.1016/j.msec.2015.11.049

    Article  CAS  Google Scholar 

  60. Fernandez-Garcia E, Chen X, Gutierrez-Gonzalez CF et al (2015) Peptide-functionalized zirconia and new zirconia/titanium biocermets for dental applications. J Dent 43:1162–1174. https://doi.org/10.1016/j.jdent.2015.06.002

    Article  CAS  PubMed  Google Scholar 

  61. Khosroshahi ME, Mahmoodi M, Saeedinasab H (2009) In vitro and in vivo studies of osteoblast cell response to a titanium-6 aluminium-4 vanadium surface modified by neodymium:yttrium–aluminium–garnet laser and silicon carbide paper. Lasers Med Sci 24:925–939. https://doi.org/10.1007/s10103-008-0628-1

    Article  CAS  PubMed  Google Scholar 

  62. Hao L, Lawrence J (2007) Wettability modification and the subsequent manipulation of protein adsorption on a Ti6Al4V alloy by means of CO2 laser surface treatment. J Mater Sci Mater Med 18:807–817. https://doi.org/10.1007/s10856-006-0002-4

    Article  CAS  PubMed  Google Scholar 

  63. Giannelli M, Bani D, Tani A et al (2017) Effects of an erbium:yttrium-aluminum-garnet laser and ultrasonic scaler on titanium dioxide-coated titanium surfaces contaminated with subgingival plaque: an in vitro study to assess post-treatment biocompatibility with osteogenic cells. J Periodontol 88:1211–1220. https://doi.org/10.1902/jop.2017.170195

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by FAPESP—Foundation for Research Support of the State of São Paulo (grant number 2019/09213-3).

Author information

Authors and Affiliations

Authors

Contributions

Isadora Gazott Simões: conceptualization, investigation, methodology, validation, investigation, resources, data curation, writing—original draft, writing—review and editing, funding acquisition. Simone Kreve: methodology. Marcos Antônio Eufrásio Cruz: methodology. André Luís Botelho: methodology, writing—original draft. Ana Paula Ramos: methodology, resources. Andrea Candido dos Reis: term, conceptualization, methodology, resources, writing—review and editing, supervision. Mariana Lima da Costa Valente: term, conceptualization, investigation, methodology, formal analysis, resources, data curation, supervision, writing—original draft, writing—review and editing, project administration, funding acquisition.

Corresponding author

Correspondence to Mariana Lima da Costa Valente.

Ethics declarations

Ethics approval

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simões, I.G., Kreve, S., Cruz, M.A.E. et al. Influence of Er:YAG laser irradiation on surface properties of Ti-6Al-4V machined and hydroxyapatite coated. Lasers Med Sci 38, 48 (2023). https://doi.org/10.1007/s10103-023-03719-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10103-023-03719-z

Keywords

Navigation