Skip to main content
Log in

Two-dimensional correlation (2D) method for improving the accuracy of OCT-based noninvasive blood glucose concentration (BGC) monitoring

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The optical scattering coefficient (μs) in the dermis layer of human skin obtained with optical coherence tomography (OCT) has shown to have a strong correlation with the blood glucose concentration (BGC), which can be used for noninvasive BGC monitoring. Unfortunately, the nonhomogeneity in the skin may cause inaccuracies for the BGC analysis. In this paper, we propose a 2D correlation analysis method to identify 2D regions in the skin with μs sensitive to BGC variations and only use data in these regions to calculate μs for minimizing the inaccuracy induced by nonhomogeneity and therefore improving the accuracy of OCT-based BGC monitoring. We demonstrate the effectiveness of the 2D method with OCT data obtained with in vivo human forearm skins of nine different human subjects. In particular, we present a 3D OCT data set in a two-dimensional (2D) map of depth vs. a lateral dimension and calculate the correlation coefficient R between the μs and the BGC in each region of the 2D map with the BGC data measured with a glucose meter using finger blood. We filter out the μs data from regions with low R values and only keep the μs data with R values sufficiently high (R-filter). The filtered μs data in all the regions are then averaged to produce an average μs data. We define a term called overall relevancy (OR) to quantify the degree of correlation between the filtered/averaged μs data and the finger-blood BGC data to determine the optimal R value for such an R-filter with the highest obtained OR. We found that the optimal R for such an R-filter has an absolute value (|R|) of 0.6 or 0.65. We further show that the R-filter obtained with the 2D correlation method yields better OR between μs and the BGC than that obtained with the previously reported 1D correlation method. We believe that the method demonstrated in this paper is important for understanding the influence of BGC on μs in human skins and therefore for improving the accuracy of OCT-based noninvasive BGC monitoring, although further studies are required to validate its effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C. C.T . Group, Nathan DM, Genuth S, Lachin J, Cleary P, Crofford O, Davis M, Rand L, Siebert C (1993) N.Engl.J.Med 329(3):977–986

    Google Scholar 

  2. Takashi M, Kokoro T, Fumi Y, Hiroshi O, Junichiro K, Kazunori Y, Naoki S (2015) J, Diabetes Invest 6(6):687–691

    Article  Google Scholar 

  3. Andrews JT, Solanki J, Choudhary OP, Chouksey S, Malvia N, Chaturvedi P, Sen P (2012) J PhysConf 365:012004

    Google Scholar 

  4. Larin KV, Eledrisi MS, Motamedi M, Esenaliev RO (2002) Diabetes Care 25(12):2263–2267

    Article  CAS  Google Scholar 

  5. Ullah H, Hussain F, Ikram M (2015) Appl Phys Bvol 120(2):1–12

    Google Scholar 

  6. Solanki J, Sen P, Andrews JT, Thareja KK (2012) J Opt 41(3):127–133

    Article  Google Scholar 

  7. Esenaliev RO, Larin KV, Larina IV, Motamedi M (2001) Opt Lett 26(13):992–994

    Article  CAS  Google Scholar 

  8. Su Y, Meng Z, Wang L, Yu H, Liu T, Yao XY (2014) Chin J Lasers 41:0704002

    Article  Google Scholar 

  9. Kuranov RV, Sapozhnikova VV, Prough DS, Cicenaite I, Esenaliev RO (2006) Phys Med Biol 51(16):3885–3900

    Article  CAS  Google Scholar 

  10. Hori Y, Yasuno Y, Sakai S, Matsumoto M, Sugawara T, Madjarova VD, Yamanari M, Makita S, Yasui T, Araki T, Itoh M, Yatagai T (2006) Opt Express 14(5):1862–1877

    Article  Google Scholar 

  11. Bhandari A, Hamre B, Frette Ø, Stamnes K, Stamnes JJ (2011) Opt Express 19(15):14549

    Article  CAS  Google Scholar 

  12. Su Y, Yao XS, Meng Z, Yu LWH, Liu T (2014) Chin Opt Lett 12(11):111701

    Article  Google Scholar 

  13. MyDr (2015) Skin biology and structure. http://www.mydr.com.au/skin-hair/skin-biology-and-structure

  14. Su Y, Yao XS, Wei CJ, Wang YM, Wang HJ, Li ZH (2015) Biomed Opt Express 6(2):500–513

    Article  Google Scholar 

  15. Su Y, Yao XS, Wei CJ, Wang YM, Wang HJ, Li ZH (2016) IEEE Photonics J 8(1):1–10

    Article  CAS  Google Scholar 

  16. Caduff A, Talary MS, Zakharov P (2010) Diabetes Technol Ther 12(1):1–9

    Article  CAS  Google Scholar 

  17. Faber D, Van DMF, Aalders M, Van LT (2004) Opt Express 12(19):4353–4365

    Article  Google Scholar 

  18. Laufer J, Simpson R, Kohl M, Essenpreis M, Cope M (1998) Phys Med Biol 43(9):2479–2489

    Article  CAS  Google Scholar 

  19. Yao XS, Wang LZ, Meng Z China Patent 2015, 201310210400.0 [P]

  20. Turani Z, Fatemizadeh E, Blumetti T, Daveluy S, Moraes AF, Chen W, Mehregan D, Andersen PE, Nasiriavanaki M (2019) Cancer Res 79(8):2021–2030

    Article  CAS  Google Scholar 

  21. Lee CK, Tsai MT, Chang FY, Yang CH, Shen SC, Yuan O, Yang CH (2013) Sensors 13(4):4041–4050

    Article  Google Scholar 

  22. Kholodnykh AI, Petrova IY, Larin KV, Motamedi M, Esenaliev RO (2003) Appl Opt 42(16):3027–3037

    Article  Google Scholar 

  23. Yang Y, Wang T, Biswal NC, Wang X, Sanders M, Brewer M, Zhu Q (2011) J Biomed Opt 16:2143–2152

    Google Scholar 

  24. Coleman AJ, Richardson TJ, Orchard G, Uddin A, Choi MJ, Lacy KE (2013) Skin Res Technol 19(1):e10–e19

    Article  Google Scholar 

  25. Schliesser JA, Gallimore G, Kunjukunju N, Sabates NR, Koulen P, Sabates FN (2014) Clin Ophthalmol (default):2337–2345

  26. Tsukamoto Y, Kinoshita Y, Kitagawa H, Munekage M, Munekage E, Takezaki Y, Yatabe T, Yamashita K, Yamazaki R, Okabayashi T, Tarumi M, Kobayashi M, Mishina S, Hanazaki K (2013) Artif Organs 37(4):E67–E73

    Article  CAS  Google Scholar 

  27. Larsson M, Nilsson H, Strömberg T (2003) Appl Opt 42(1):124

    Article  Google Scholar 

  28. Larin KV, Motamedi M, Ashitkov TV, Esenaliev RO (2003) Phys Med Biol 48(10):1371

    Article  Google Scholar 

  29. Graaff R, Aarnoudse JG, Zijp JR, Sloot PMA, de Mul FFM, Greve J, Koelink MH (1992) Appl Opt 31(10):1370–1376

    Article  CAS  Google Scholar 

  30. Menon GK (2002) Adv Drug Deliv Rev 54(11):S3–S17

    Article  CAS  Google Scholar 

  31. Gabbay RA, Sivarajah S (2008) Diabetes Technol Ther 10(3):188–193

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded in part by the Natural Science Foundation of Hebei Province F2016201208, in part by the Youth Foundation of Hebei Educational Committee QN2017022, and in part by the Advanced Talents Program of Hebei Educational Committee GCC2014020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Steve Yao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was independently reviewed and approved by the human subjects ethics board of the Affiliated Hospital of Hebei University and was conducted in accordance with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Y., Liu, H., Wang, H. et al. Two-dimensional correlation (2D) method for improving the accuracy of OCT-based noninvasive blood glucose concentration (BGC) monitoring. Lasers Med Sci 36, 1649–1659 (2021). https://doi.org/10.1007/s10103-021-03244-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-021-03244-x

Keywords

Navigation