Skip to main content

Advertisement

Log in

Antimicrobial photodynamic therapy against Propionibacterium acnes biofilms using hypericin (Hypericum perforatum) photosensitizer: in vitro study

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Acne vulgaris is the most recurring skin condition in the world, causing great harm to the physical and psychological well-being of many patients. Antimicrobial photodynamic therapy (aPDT) has broad therapeutic applicability. The purpose was to evaluate in vitro the photodynamic inactivation against Propionibacterium acnes (P. acnes) biofilms by using different concentrations of hypericin (Hypericum perforatum) photosensitizer associated with different energies of low-level laser. The biofilms were placed in 96-well microplates with a 6.4-mm diameter surface, by using standard suspensions (2 × 107 CFU/mL) and grown in brain heart infusion broth (BHI) for 48 h in anaerobic chamber. Subsequently, the control group received application of 0.9% sterile saline solution for 3 min; the photosensitising groups received hypericin at concentrations of 5 and 15 μg/mL for 3 min; the laser groups received irradiation of energies of 3 and 5 J (660 nm, continuous output, 100 mW, 30 and 50 s and 100 J/cm2 and 166 J/cm2, respectively); the aPDT groups received 5 and 15 μg/mL concentrations of hypericin associated with energies of 3 and 5 J of low-level laser irradiation. After the biofilms were broken up and seeded for CFU counting. The results showed a reduction in P. acnes biofilms after aPDT emphasising that 15 μg/mL hypericin associated with 3 and 5 J laser irradiation reduced biofilms by 14.1 and 27.9%, respectively. In addition, all groups of aPDT demostrated statistically significant reductions. In vitro photodynamic inactivation against P. acnes biofilms using different concentration of hypericin photosensitizer associated with different energies of low-level laser promoted effective antimicrobial action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Mottin VHM, Suyenaga ES (2018) An approach on the potential use of probiotics in the treatment of skin conditions: acne and atopic dermatitis. Int J Dermatol 57(12):1425–1432. https://doi.org/10.1111/ijd.13972

    Article  PubMed  Google Scholar 

  2. Corvec S (2018) Clinical and biological features of Cutibacterium (formerly Propionibacterium) avidum, an underrecognized microorganism. Clin Microbiol 31(3):e00064–e00017. https://doi.org/10.1128/CMR.00064-17

    Article  CAS  Google Scholar 

  3. Fox L, Csongradi C, Aucamp M, du Plessis J, Gerber M (2016) Treatment modalities for acne. Molecules 21(8):1063. https://doi.org/10.3390/molecules21081063

    Article  CAS  PubMed Central  Google Scholar 

  4. Williams HC, Dellavalle RP, Garner S (2012) Acne vulgaris [published correction appears in Lancet 379(9813):361–372. https://doi.org/10.1016/S0140-6736(11)60321-8

  5. Achermann Y, Liu J, Zbinden R et al (2018) Propionibacterium avidum: a virulent pathogen causing hip periprosthetic joint infection. Clin Infect Dis 66(1):54–63. https://doi.org/10.1093/cid/cix665

    Article  CAS  PubMed  Google Scholar 

  6. Wan MT, Lin JY (2014) Current evidence and applications of photodynamic therapy in dermatology. Clin Cosmet Investig Dermatol 7:145–163. https://doi.org/10.2147/CCID.S35334

    Article  PubMed  PubMed Central  Google Scholar 

  7. Nardini EF, Almeida TS, Yoshimura TM, Ribeiro MS, Cardoso RJ, Garcez AS (2019) The potential of commercially available phytotherapeutic compounds as new photosensitizers for dental antimicrobial PDT: a photochemical and photobiological in vitro study. Photodiagn Photodyn Ther 27:248–254. https://doi.org/10.1016/j.pdpdt.2019.05.027

    Article  CAS  Google Scholar 

  8. Boen M, Brownell J, Patel P, Tsoukas MM (2017) The role of photodynamic therapy in acne: an evidence-based review. Am J Clin Dermatol 18(3):311–321. https://doi.org/10.1007/s40257-017-0255-3

    Article  PubMed  Google Scholar 

  9. Li SS, Zhang LL, Nie S, Lv T, Wang HW (2018) Severe acne in monozygotic twins treated with photodynamic therapy. Photodiagn Photodyn Ther 23:235–236. https://doi.org/10.1016/j.pdpdt.2018.06.016

    Article  Google Scholar 

  10. Galeotti N (2017) Hypericum perforatum (St John’s wort) beyond depression: a therapeutic perspective for pain conditions. J Ethnopharmacol 200:136–146. https://doi.org/10.1016/j.jep.2017.02.016

    Article  CAS  PubMed  Google Scholar 

  11. Napoli E, Siracusa L, Ruberto G et al (2018) Phytochemical profiles, phototoxic and antioxidant properties of eleven Hypericum species - a comparative study. Phytochemistry 152:162–173. https://doi.org/10.1016/j.phytochem.2018.05.003

    Article  CAS  PubMed  Google Scholar 

  12. Marrelli M, Menichini G, Provenzano E, Conforti F (2014) Applications of natural compounds in the photodynamic therapy of skin cancer. Curr Med Chem 21(12):1371–1390. https://doi.org/10.2174/092986732112140319094324

    Article  CAS  PubMed  Google Scholar 

  13. Villacorta RB, Roque KFJ, Tapang GA, Jacinto SD (2017) Plant extracts as natural photosensitizers in photodynamic therapy: in vitro activity against human mammary adenocarcinoma MCF-7 cells. Asian Pac J Trop Biomed:358–366. https://doi.org/10.1016/j.apjtb.2017.01.025

  14. Gonçalves MLL, da Mota ACC, Deana AM et al (2018) Photodynamic therapy with Bixa orellana extract and LED for the reduction of halitosis: study protocol for a randomized, microbiological and clinical trial. Trials 19(1):590. https://doi.org/10.1186/s13063-018-2913-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Garcez AS, Núñez SC, Azambuja N Jr et al (2013) Effects of photodynamic therapy on gram-positive and gram-negative bacterial biofilms by bioluminescence imaging and scanning electron microscopic analysis. Photomed Laser Surg 31(11):519–525. https://doi.org/10.1089/pho.2012.3341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Okuda KI, Nagahori R, Yamada S et al (2018) The composition and structure of biofilms developed by Propionibacterium acnes isolated from cardiac pacemaker devices. Front Microbiol 9:182. https://doi.org/10.3389/fmicb.2018.00182

    Article  PubMed  PubMed Central  Google Scholar 

  17. Li ZH, Meng DS, Li YY et al (2014) Hypericin damages the ectatic capillaries in a Roman cockscomb model and inhibits the growth of human endothelial cells more potently than hematoporphyrin does through induction of apoptosis. Photochem Photobiol 90(6):1368–1375. https://doi.org/10.1111/php.12323

    Article  CAS  PubMed  Google Scholar 

  18. Bernal C, Ribeiro AO, Andrade GP, Perussi JR (2015) Photodynamic efficiency of hypericin compared with chlorin and hematoporphyrin derivatives in HEp-2 and Vero epithelial cell lines. Photodiagn Photodyn Ther 12(2):176–185. https://doi.org/10.1016/j.pdpdt.2015.04.003

    Article  CAS  Google Scholar 

  19. Yow CM, Tang HM, Chu ES, Huang Z (2012) Hypericin-mediated photodynamic antimicrobial effect on clinically isolated pathogens. Photochem Photobiol 88(3):626–632. https://doi.org/10.1111/j.1751-1097.2012.01085.x

    Article  CAS  PubMed  Google Scholar 

  20. Jeon YM, Lee HS, Jeong D, Oh HK, Ra KH, Lee MY (2015) Antimicrobial photodynamic therapy using chlorin e6 with halogen light for acne bacteria-induced inflammation. Life Sci 124:56–63. https://doi.org/10.1016/j.lfs.2014.12.029

    Article  CAS  PubMed  Google Scholar 

  21. Wang YY, Ryu AR, Jin S, Jeon YM, Lee MY (2017) Chlorin e6-mediated photodynamic therapy suppresses P. acnes-induced inflammatory response via NFκB and MAPKs signaling pathway. PLoS One 12(1):e0170599

    Article  Google Scholar 

  22. Dai T, Gupta A, Murray CK, Vrahas MS, Tegos GP, Hamblin MR (2012) Blue light for infectious diseases: Propionibacterium acnes, Helicobacter pylori, and beyond? Drug Resist Updat 15(4):223–236. https://doi.org/10.1016/j.drup.2012.07.001

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lopez-Bazzocchi I, Hudson JB, Towers GH (1991) Antiviral activity of the photoactive plant pigment hypericin. Photochem Photobiol 54(1):95–98. https://doi.org/10.1111/j.1751-1097.1991.tb01990.x

    Article  CAS  PubMed  Google Scholar 

  24. Hudson JB, Lopez-Bazzocchi I, Towers GH (1991) Antiviral activities of hypericin. Antivir Res 15(2):101–112. https://doi.org/10.1016/0166-3542(91)90028-p

    Article  CAS  PubMed  Google Scholar 

  25. Miskovsky P (2002) Hypericin--a new antiviral and antitumor photosensitizer: mechanism of action and interaction with biological macromolecules. Curr Drug Targets 3(1):55–84. https://doi.org/10.2174/1389450023348091

    Article  CAS  PubMed  Google Scholar 

  26. Süntar I, Oyardı O, Akkol EK, Ozçelik B (2016) Antimicrobial effect of the extracts from Hypericum perforatum against oral bacteria and biofilm formation. Pharm Biol 54(6):1065–1070. https://doi.org/10.3109/13880209.2015.1102948

    Article  PubMed  Google Scholar 

  27. Paz-Cristobal MP, Royo D, Rezusta A et al (2014) Photodynamic fungicidal efficacy of hypericin and dimethyl methylene blue against azole-resistant Candida albicans strains. Mycoses 57(1):35–42. https://doi.org/10.1111/myc.12099

    Article  CAS  PubMed  Google Scholar 

  28. Ocker L, Adamus A, Hempfling L et al (2020) Hypericin and its radio iodinated derivatives - a novel combined approach for the treatment of pediatric alveolar rhabdomyosarcoma cells in vitro. Photodiagn Photodyn Ther 29:101588

    Article  CAS  Google Scholar 

  29. Wainwright M, Byrne MN, Gattrell MA (2006) Phenothiazinium-based photobactericidal materials. J Photochem Photobiol B 84(3):227–230. https://doi.org/10.1016/j.jphotobiol.2006.03.002

    Article  CAS  PubMed  Google Scholar 

  30. Demidova TN, Hamblin MR (2004) Photodynamic therapy targeted to pathogens. Int J Immunopathol Pharmacol 17(3):245–254. https://doi.org/10.1177/039463200401700304

    Article  CAS  PubMed  Google Scholar 

  31. Hamblin MR, Hasan T (2004) Photodynamic therapy: a new antimicrobial approach to infectious disease? Photochem Photobiol Sci 3(5):436–450. https://doi.org/10.1039/b311900a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Garcez AS, Nuñez SC, Hamblin MR, Ribeiro MS (2008) Antimicrobial effects of photodynamic therapy on patients with necrotic pulps and periapical lesion. J Endod 34(2):138–142. https://doi.org/10.1016/j.joen.2007.10.020

    Article  PubMed  Google Scholar 

  33. Rezusta A, López-Chicón P, Paz-Cristobal MP et al (2012) In vitro fungicidal photodynamic effect of hypericin on Candida species. Photochem Photobiol 88(3):613–619. https://doi.org/10.1111/j.1751-1097.2011.01053.x

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lívia Assis.

Ethics declarations

Competing interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barroso, R.A., Navarro, R., Tim, C.R. et al. Antimicrobial photodynamic therapy against Propionibacterium acnes biofilms using hypericin (Hypericum perforatum) photosensitizer: in vitro study. Lasers Med Sci 36, 1235–1240 (2021). https://doi.org/10.1007/s10103-020-03163-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-020-03163-3

Keywords

Navigation