Skip to main content

Advertisement

Log in

Antimicrobial effect of photodynamic therapy using sinoporphyrin sodium and 390–400 nm light-emitting diode on Porphyromonas gingivalis in vitro

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

This study aims to investigate the effect of antimicrobial photodynamic therapy (a-PDT) using a novel combination of sinoporphyrin sodium (DVDMS) and light-emitting diode (LED) with a wavelength of 390–400 nm on Porphyromonas gingivalis in vitro. Absorption spectrum of DVDMS was determined by spectrometer for selecting suitable wavelength light source. The uptake of DVDMS by P. gingivalis was evaluated according to fluorescence intensity detected by a spectrometer. Then effects of DVDMS alone, 390–400 nm LED alone, and photodynamic therapy produced by 10, 20, 40, and 80 μg/mL DVDMS and 390–400 nm LED on the suspension of P. gingivalis were evaluated by counting the number of colony forming units (CFU) after incubation. In the experiment, the LED illumination time was 30, 60, 90, 120, 180, 240, and 360 s, respectively, and the corresponding energy density was 1, 2, 3, 4, 6, 8, and 12 J/cm2, respectively. According to the absorption spectrum of DVDMS, the 390–400-nm light emitted by the LED was selected as the light source. The fluorescence intensity of DVDMS on P. gingivalis increased significantly at 5 min, and with the extension of time, it decreased at 30 min. DVDMS alone did not produce a significant toxicity on P. gingivalis compared with PBS (p = 0.979). While 390–400 nm LED alone had a certain bactericidal effect on P. gingivalis, the bactericidal effect was more obvious as the light dose increased (p < 0.001). The effect of a-PDT produced by 20, 40, and 80 μg/mL DVDMS and 390–400 nm LED were significantly better than that of 390–400 nm LED alone (p < 0.05). Both DVDMS concentration and light dose could enchance the bactericidal effect. The strongest photo-killing effect was generated by 80 μg/mL DVDMS with 360 s illumination (energy density is 12 J/cm2), and the log reduction of bacteria was 5.69 ± 1.70. a-PDT using the combination of DVDMS with 390–400 nm LED shows promise as a new treatment modality for pathogens elimination in periodontal therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Petersen PE, Ogawa H (2012) The global burden of periodontal disease: towards integration with chronic disease prevention and control. Periodontology 2000 60(1):15–39. https://doi.org/10.1111/j.1600-0757.2011.00425.x

    Article  PubMed  Google Scholar 

  2. Jepsen K, Jepsen S (2016) Antibiotics/antimicrobials: systemic and local administration in the therapy of mild to moderately advanced periodontitis. Periodontol 2000 71(1):82–112. https://doi.org/10.1111/prd.12121

    Article  PubMed  Google Scholar 

  3. Drisko CH (2001) Nonsurgical periodontal therapy. Periodontol 2000 25:77–88. https://doi.org/10.1034/j.1600-0757.2001.22250106.x

    Article  CAS  PubMed  Google Scholar 

  4. Drisko CL (2014) Periodontal debridement: still the treatment of choice. J Evid Based Dent Pract 4(Suppl):33–41.e1. https://doi.org/10.1016/j.jebdp.2014.02.007

    Article  Google Scholar 

  5. Pihlstrom B (2014) Treatment of periodontitis: key principles include removing subgingival bacterial deposits; providing a local environment and education to support good home care; providing regular professional maintenance. J Periodontol 85(5):655–656. https://doi.org/10.1902/jop.2014.140046

    Article  PubMed  Google Scholar 

  6. Jepsen S, Deschner J, Braun A, Schwarz F, Eberhard J (2011) Calculus removal and the prevention of its formation. Periodontol 2000 55(1):167–188. https://doi.org/10.1111/j.1600-0757.2010.00382.x

    Article  PubMed  Google Scholar 

  7. Kim TS, Schenk A, Lungeanu D, Reitmeir P, Eickholz P (2007) Nonsurgical and surgical periodontal therapy in single-rooted teeth. Clin Oral Investig 11(4):391–399. https://doi.org/10.1007/s00784-007-0144-x

    Article  PubMed  PubMed Central  Google Scholar 

  8. Walker C, Karpinia K (2002) Rationale for use of antibiotics in periodontics. J Periodontol 73(10):1188–1196. https://doi.org/10.1902/jop.2002.73.10.1188

    Article  PubMed  Google Scholar 

  9. Soukos NS, Ximenez-Fyvie LA, Hamblin MR, Socransky SS, Hasan T (1998) Targeted antimicrobial photochemotherapy. Antimicrob Agents Chemother 42(10):2595–2601

    Article  CAS  Google Scholar 

  10. Sigusch BW, Engelbrecht M, Völpel A, Holletschke A, Pfister W, Schütze J (2010) Full-mouth antimicrobial photodynamic therapy in Fusobacterium nucleatum-infected periodontitis patients. J Periodontol 81(7):975–981. https://doi.org/10.1902/jop.2010.090246

    Article  PubMed  Google Scholar 

  11. Pavlič A, Matoh U, Rajić V, Petelin M (2017) Effect of repeated antimicrobial photodynamic therapy in treatment of periodontitis associated with Fanconi anemia. Photomed Laser Surg 35(1):64–68. https://doi.org/10.1089/pho.2016.4122

    Article  CAS  PubMed  Google Scholar 

  12. Park D, Choi EJ, Weon KY, Lee W, Lee SH, Choi JS, Park GH, Lee B, Byun MR, Baek K, Choi JW (2019) Non-invasive photodynamic therapy against -periodontitis-causing Bacteria. Sci Rep 9(1):8248. https://doi.org/10.1038/s41598-019-44498-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Oruba Z, Łabuz P, Macyk W, Chomyszyn-Gajewska M (2017) Periopathogens differ in terms of the susceptibility to toluidine blue O-mediated photodynamic inactivation. Photodiagn Photodyn Ther 20:28–34. https://doi.org/10.1016/j.pdpdt.2017.08.008

    Article  CAS  Google Scholar 

  14. Habiboallah G, Mahdi Z, Mahbobeh NN, Mina ZJ, Sina F, Majid Z (2014) Bactericidal effect of visible light in the presence of erythrosine on Porphyromonas gingivalis and Fusobacterium nucleatum compared with diode laser, an in vitro study. Laser Ther 23(4):263–271. https://doi.org/10.5978/islsm.14-OR-20

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chui C, Aoki A, Takeuchi Y, Sasaki Y, Hiratsuka K, Abiko Y, Izumi Y (2013) Antimicrobial effect of photodynamic therapy using high-power blue light-emitting diode and red-dye agent on Porphyromonas gingivalis. J Periodontal Res 48(6):696–705. https://doi.org/10.1111/jre.12055

    Article  CAS  PubMed  Google Scholar 

  16. Pfitzner A, Sigusch BW, Albrecht V, Glockmann E (2004) Killing of periodonto pathogenic bacteria by photodynamic therapy. J Periodontol 75(10):1343–1349. https://doi.org/10.1902/jop.2004.75.10.1343

    Article  CAS  PubMed  Google Scholar 

  17. Rovaldi CR, Pievsky A, Sole NA, Friden PM, Rothstein DM, Spacciapoli P (2000) Photoactive porphyrin derivative with broad-spectrum activity against oral pathogens in vitro. Antimicrob Agents Chemother 44(12):3364–3367. https://doi.org/10.1128/aac.44.12.3364-3367.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chui C, Hiratsuka K, Aoki A, Takeuchi Y, Abiko Y, Izumi Y (2012) Blue LED inhibits the growth of Porphyromonas gingivalis by suppressing the expression of genes associated with DNA replication and cell division. Lasers Surg Med 44(10):856–864. https://doi.org/10.1002/lsm.22090

    Article  PubMed  Google Scholar 

  19. Enwemeka CS, Williams D, Enwemeka SK, Hollosi S, Yens D (2009) Blue 470-nm light kills methicillin-resistant Staphylococcus aureus (MRSA) in vitro. Photomed Laser Surg 27(2):221–226. https://doi.org/10.1089/pho.2008.2413

    Article  PubMed  Google Scholar 

  20. Enwemeka CS, Williams D, Hollosi S, Yens D, Enwemeka SK (2008) Visible 405 nm SLD light photo-destroys methicillin-resistant Staphylococcus aureus (MRSA) in vitro. Lasers Surg Med 40(10):734–737. https://doi.org/10.1002/lsm.20724

    Article  PubMed  Google Scholar 

  21. Guffey JS, Wilborn J (2006) Effects of combined 405-nm and 880-nm light on Staphylococcus aureus and Pseudomonas aeruginosa in vitro. Photomed Laser Surg 24(6):680–683. https://doi.org/10.1089/pho.2006.24.680

    Article  PubMed  Google Scholar 

  22. Feuerstein O, Persman N, Weiss EI (2004) Phototoxic effect of visible light on Porphyromonas gingivalis and Fusobacterium nucleatum: an in vitro study. Photochem Photobiol 80(3):412–415. https://doi.org/10.1562/0031-8655(2004)080<0412:PEOVLO>2.0.CO;2

    Article  CAS  PubMed  Google Scholar 

  23. Fang Q, Yang D (2009) A porphyrin dimer sodium salt combined with the ether bond and its manufacturing method. China patent: ZL200910179116.5

  24. Wang X, Hu J, Wang P, Zhang S, Liu Y, Xiong W, Liu Q (2015) Analysis of the in vivo and in vitro effects of photodynamic therapy on breast cancer by using a sensitizer, sinoporphyrin sodium. Theranostics 5(7):772–786. https://doi.org/10.7150/thno.10853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang H, Wang X, Zhang S, Wang P, Zhang K, Liu Q (2014) Sinoporphyrin sodium, a novel sensitizer, triggers mitochondrial-dependent apoptosis in ECA-109 cells via production of reactive oxygen species. Int J Nanomedicine 9:3077–3090. https://doi.org/10.2147/IJN.S59302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hu J, Wang X, Liu Q, Zhang K, Xiong W, Xu C, Wang P, Leung AW (2014) Antitumor effect of sinoporphyrin sodium-mediated photodynamic therapy on human esophageal cancer Eca-109 cells. Photochem Photobiol 90(6):1404–1412. https://doi.org/10.1111/php.12333

    Article  CAS  PubMed  Google Scholar 

  27. Mai B, Wang X, Liu Q, Leung AW, Wang X, Xu C, Wang P (2016) The antibacterial effect of sinoporphyrin sodium photodynamic therapy on Staphylococcus aureus planktonic and biofilm cultures. Lasers Surg Med 48(4):400–408. https://doi.org/10.1002/lsm.22468

    Article  PubMed  Google Scholar 

  28. Jang JY, Baek KJ, Choi Y, Ji S (2017) Relatively low invasive capacity of Porphyromonas gingivalis strains into human gingival fibroblasts in vitro. Arch Oral Biol 83:265–271. https://doi.org/10.1016/j.archoralbio.2017.08.007

    Article  PubMed  Google Scholar 

  29. Al-Taweel FBH, Al-Magsoosi MJN, Douglas CWI, Whawell SA (2018) Identification of key determinants in Porphyromonas gingivalis is host-cell invasion assays. Eur J Oral Sci 126(5):367–372. https://doi.org/10.1111/eos.12557

    Article  CAS  PubMed  Google Scholar 

  30. Amano A, Nakagawa I, Okahashi N, Hamada N (2004) Variations of Porphyromonas gingivalis fimbriae in relation to microbial pathogenesis. J Periodontal Res 39(2):136–142. https://doi.org/10.1111/j.1600-0765.2004.00719.x

    Article  PubMed  Google Scholar 

  31. Hu J, Wang X, Zhang K, Wang P, Su X, Li Y, Huang Z, Liu Q (2014) Sinoporphyrin sodium: a novel sensitizer in sonodynamic therapy. Anti-Cancer Drugs 25(2):174–182. https://doi.org/10.1097/CAD.0000000000000031

    Article  CAS  PubMed  Google Scholar 

  32. Hamblin MR, Hasan T (2004) Photodynamic therapy: a new antimicrobial approach to infectious disease? Photochem Photobiol Sci 3(5):436–450. https://doi.org/10.1039/b311900a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Enwemeka CS, Williams D, Hollosi S, Yens D, Enwemeka SK (2008) Visible 405nm SLD light photo-destroys methicillin resistant Staphylococcus aureus (MRSA) in vitro. Lasers Surg Med 40(10):734–737. https://doi.org/10.1002/lsm.20724

    Article  PubMed  Google Scholar 

  34. Enwemeka CS, Williams D, Hollosi S, Enwemeka SK, Hollosi S, Yens D (2009) Blue 470-nm light kills methicillin-resistant (MRSA) in vitro. Photomed Laser Surg 27(2):221–226. https://doi.org/10.1089/pho.2008.2413

    Article  PubMed  Google Scholar 

  35. Maclean M, McKenzie K, Anderson JG, Gettinby G, MacGregor SJ (2014) 405 nm light technology for the inactivation of pathogens and its potential role for environmental disinfection and infection control. J Hosp Infect 88(1):1–11. https://doi.org/10.1016/j.jhin.2014.06.004

    Article  CAS  PubMed  Google Scholar 

  36. Bumah VV, Masson-Meyers DS, Cashin S, Enwemeka CS (2015) Optimization of the antimicrobial effect of blue light on methicillin-resistant Staphylococcus aureus (MRSA) in vitro. Lasers Surg Med 47(3):266–272. https://doi.org/10.1002/lsm.22327

    Article  PubMed  PubMed Central  Google Scholar 

  37. Guffey JS, Wilborn J (2006) In vitro bactericidal effects of 405-nm and 470-nm blue light. Photomed Laser Surg 24(6):684–688. https://doi.org/10.1089/pho.2006.24.684

    Article  PubMed  Google Scholar 

  38. Soukos NS, Som S, Abernethy AD, Ruggiero K, Dunham J, Lee C, Doukas AG, Goodson JM (2005) Phototargeting oral black-pigmented bacteria. Antimicrob Agents Chemother 49(4):1391–1396. https://doi.org/10.1128/AAC.49.4.1391-1396.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Song HH, Lee JK, Um HS, Chang BS, Lee SY, Lee MK (2013) Phototoxic effect of blue light on the planktonic and biofilm state of anaerobic periodontal pathogens. J Periodontal Implant Sci 43(2):72–78. https://doi.org/10.5051/jpis.2013.43.2.72

    Article  PubMed  PubMed Central  Google Scholar 

  40. Yoshida A, Sasaki H, Toyama T, Araki M, Fujioka J, Tsukiyama K, Hamada N, Yoshino F (2017) Antimicrobial effect of blue light using Porphyromonas gingivalis pigment. Sci Rep 7(1):5225. https://doi.org/10.1038/s41598-017-05706-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Webb RB, Malina MM (1967) Mutagenesis in Escherichia coli by visible light. Science 156(3778):1104–1105. https://doi.org/10.1126/science.156.3778.1104

    Article  CAS  PubMed  Google Scholar 

  42. Gourmelon M, Cillard J, Pommepuy M (1994) Visible light damage to Escherichia coli in seawater: oxidative stress hypothesis. J Appl Bacteriol 77(1):105–112. https://doi.org/10.1111/j.1365-2672.1994.tb03051.x

    Article  CAS  PubMed  Google Scholar 

  43. NCCLS (1999) Methods for determining bactericidal activity of antimicrobial agents, approved guideline, NCCLS document M26-A. National Committee for Clinical Laboratory Standards, Wayne

    Google Scholar 

Download references

Acknowledgments

We would like to express our special thanks to the applied spectroscopy laboratory of Harbin Institute of Technology, Harbin, China and the microbiological lab of Harbin Medical University Harbin, China for providing technical support for this research. DVDMS was kindly provided by Qinglong High Technology Co. Ltd., Jiangxi, China.

Funding

This research was supported by the National Natural Science Foundation of China (No. 81670994), Health and Family Planning Commission Research Project of Heilongjiang Province (No. 2017-135), and Innovative Research Programs for Graduate students of Harbin Medical University (No. YJSCX2016-31HYD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liangjia Bi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Y., Lin, J., Zhang, Z. et al. Antimicrobial effect of photodynamic therapy using sinoporphyrin sodium and 390–400 nm light-emitting diode on Porphyromonas gingivalis in vitro. Lasers Med Sci 36, 153–164 (2021). https://doi.org/10.1007/s10103-020-03067-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-020-03067-2

Keywords

Navigation