Skip to main content

Advertisement

Log in

In vitro CO2 9.3-μm short-pulsed laser caries prevention—effects of a newly developed laser irradiation pattern

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Caries prevention with different lasers has been investigated in laboratory studies and clinical pilot trials. Objective of this in vitro study was to assess whether 9.3-μm microsecond short-pulsed CO2 laser irradiation enhances enamel caries resistance without melting, with and without additional fluoride application. Seven groups of enamel, totaling 105 human enamel samples, were irradiated with 2 different carbon dioxide lasers with 2 different energy application systems (original versus spread beam; 9.3 μm wavelength, pulse repetition rate 43 Hz vs 100 Hz, fluence ranges from 1.4 to 3.9 J/cm2, pulse duration 3 μs to 18 μs). The laboratory pH-cycling was performed with or without additional fluoride, followed by cross-sectional microhardness testing. To assess caries inhibition, the mean relative mineral loss delta Z (∆Z) was determined. To evaluate for melting, scanning electron microscopy (SEM) examinations were performed. For the non-laser control groups with additional fluoride use, the relative mineral loss (ΔZ, vol% × μm) ranged between 512 ± 292 and 809 ± 297 (mean ± SD). ΔZ for the laser-irradiated samples with fluoride use ranged between 186 ± 214 and 374 ± 191, averaging a 58% ± 6% mineral loss reduction (ANOVA, P < 0.01 to P < 0.0001). For the non-laser-treated controls without additional fluoride, the mineral loss increased (ΔZ 914 ± 422 to 1224 ± 736). In contrast, the ΔZ for the laser-treated groups without additional fluoride ranged between 463 ± 190 and 594 ± 272 (P < 0.01 to P < 0.001) indicative of 50% ± 2% average reduction in mineral loss. Enhanced caries resistance was achieved by all applied fluences. Using the spread beam resulted in enhanced resistance without enamel melting as seen by SEM. CO2 9.3-μm short-pulsed laser irradiation with both laser beam configurations resulted in highly significant reduction in enamel mineral loss. Modifying the beam to a more homogenous profile will allow enamel caries resistance even without apparent enamel melting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Stern RH, Sognnaes RF (1972) Laser inhibition of dental caries suggested by first tests in vivo. J Am Dent Assoc 85(5):1087–1090

    CAS  PubMed  Google Scholar 

  2. Stern RH, Vahl J, Sognnaes RF (1972) Lased enamel: ultrastructural observations of pulsed carbon dioxide laser effects. J Dent Res 51(2):455–460

    CAS  PubMed  Google Scholar 

  3. Beeking PO, Herrmann C, Zuhrt R (1990) Examination of laser-treated tooth surfaces after exposure to acid. Dtsch Stomatol 40(12):490–492

    CAS  PubMed  Google Scholar 

  4. Nammour S, Renneboog-Squilbin C, Coomans D, Dourou N 1990 The resistance of the dentine to acid following vaporisation of the caries by CO2 laser. In: Melcer J (ed) Innov Tech Biol Med, Paris. I.t.b.m. Journal, p 96

  5. Fox JL, Yu D, Otsuka M, Higuchi WI, Wong J, Powell GL (1992) Combined effects of laser irradiation and chemical inhibitors on the dissolution of dental enamel. Caries Res 26:333–339

    CAS  PubMed  Google Scholar 

  6. Nammour S, Renneboog-Squilbin C, Nyssen-Behets C (1992) Increased resistance to artificial caries-like lesions in dentin treated with CO2 laser. Caries Res 26(3):170–175

    CAS  PubMed  Google Scholar 

  7. Hsu J, Fox JL, Wang Z, Powell GL, Otsuka M, Higuchi WI (1998) Combined effects of laser irradiation/solution fluoride ion on enamel demineralization [published erratum appears in J Clin Laser Med Surg 1998 Oct;16(5):294-5]. J Clin Laser Med Surg 16(2):93–105

    CAS  PubMed  Google Scholar 

  8. Hossain M, Nakamura Y, Kimura Y, Ito M, Yamada Y, Matsumoto K (1999) Acquired acid resistance of dental hard tissues by CO2 laser irradiation. J Clin Laser Med Surg 17(5):223–226

    CAS  PubMed  Google Scholar 

  9. Featherstone JD, Barrett-Vespone NA, Fried D, Kantorowitz Z, Seka W (1998) CO2 laser inhibitor of artificial caries-like lesion progression in dental enamel. J Dent Res 77(6):1397–1403

    CAS  PubMed  Google Scholar 

  10. Kantorowitz Z, Featherstone JD, Fried D (1998) Caries prevention by CO2 laser treatment: dependency on the number of pulses used. J Am Dent Assoc 129(5):585–591

    CAS  PubMed  Google Scholar 

  11. Featherstone JD, Nelson DG (1987) Laser effects on dental hard tissues. Adv Dent Res 1(1):21–26

    CAS  PubMed  Google Scholar 

  12. Fried D, Zuerlein MJ, Le CQ, Featherstone JD (2002) Thermal and chemical modification of dentin by 9-11-micron CO2 laser pulses of 5-100-micros duration. Lasers Surg Med 31(4):275–282

    PubMed  Google Scholar 

  13. Goodis HE, Fried D, Gansky S, Rechmann P, Featherstone JD (2004) Pulpal safety of 9.6 micron TEA CO2 laser used for caries prevention. Lasers Surg Med 35(2):104–110. https://doi.org/10.1002/lsm.20043

    PubMed  Google Scholar 

  14. Gorton J, Featherstone JD (2003) In vivo inhibition of demineralization around orthodontic brackets. Am J Orthod Dentofac Orthop 123(1):10–14

    Google Scholar 

  15. Rechmann P, Fried D, Le CQ, Nelson G, Rapozo-Hilo M, Rechmann BM, Featherstone JD (2011) Caries inhibition in vital teeth using 9.6-μm CO2-laser irradiation. J Biomed Opt 16(7):071405. https://doi.org/10.1117/1.3564908

    PubMed  PubMed Central  Google Scholar 

  16. Rechmann P, Charland DA, Rechmann BM, Le CQ, Featherstone JD (2013) In-vivo occlusal caries prevention by pulsed CO2-laser and fluoride varnish treatment-a clinical pilot study. Lasers Surg Med 45(5):302–310. https://doi.org/10.1002/lsm.22141

    PubMed  Google Scholar 

  17. Rechmann P, Charland D, Rechmann BM, Featherstone JD (2012) Performance of laser fluorescence devices and visual examination for the detection of occlusal caries in permanent molars. J Biomed Opt 17(3):036006. https://doi.org/10.1117/1.JBO.17.3.036006

    PubMed  Google Scholar 

  18. Rechmann P, Rechmann BM, Groves WH Jr, Le CQ, Rapozo-Hilo ML, Kinsel R, Featherstone JD (2016) Caries inhibition with a CO2 9.3 μm laser: an in vitro study. Lasers Surg Med 48(5):546–554. https://doi.org/10.1002/lsm.22497

    PubMed  Google Scholar 

  19. Stookey GK, Featherstone JD, Rapozo-Hilo M, Schemehorn BR, Williams RA, Baker RA, Barker ML, Kaminski MA, McQueen CM, Amburgey JS, Casey K, Faller RV (2011) The Featherstone laboratory pH cycling model: a prospective, multi-site validation exercise. Am J Dent 24(5):322–328

    PubMed  Google Scholar 

  20. Featherstone JD, Glena R, Shariati M, Shields CP (1990) Dependence of in vitro demineralization of apatite and remineralization of dental enamel on fluoride concentration. J Dent Res 69 Spec No:620–625 discussion 634-626

    CAS  PubMed  Google Scholar 

  21. Toda S, Featherstone JD (2008) Effects of fluoride dentifrices on enamel lesion formation. J Dent Res 87(3):224–227

    CAS  PubMed  Google Scholar 

  22. Pfarrer AM, White DJ, Featherstone JD (2001) Anticaries profile qualification of an improved whitening dentifrice. J Clin Dent 12(2):30–33

    CAS  PubMed  Google Scholar 

  23. Featherstone JD, ten Cate JM, Shariati M, Arends J (1983) Comparison of artificial caries-like lesions by quantitative microradiography and microhardness profiles. Caries Res 17(5):385–391

    CAS  PubMed  Google Scholar 

  24. Rechmann P, Fried D, Le QC, Nelson G, Rapozo-Hilo M, Rechmann B, Featherstone JDB Inhibition of caries in vital teeth by CO2 laser treatment. In: Rechmann P, Fried D (eds) Lasers in Dentistry XIV, 2008. SPIE,

  25. LeGeros RZ (2002) Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop Relat Res 395:81–98

    Google Scholar 

  26. Featherstone JD, Mayer I, Driessens FC, Verbeeck RM, Heijligers HJ (1983) Synthetic apatites containing Na, Mg, and CO3 and their comparison with tooth enamel mineral. Calcif Tissue Int 35(2):169–171

    CAS  PubMed  Google Scholar 

  27. Featherstone JD, Pearson S, LeGeros RZ (1984) An infrared method for quantification of carbonate in carbonated apatites. Caries Res 18(1):63–66

    CAS  PubMed  Google Scholar 

  28. Budz JA, Lore M, Nancollas GH (1987) Hydroxyapatite and carbonated apatite as models for the dissolution Behavoir of human dental enamel. Adv Dent Res 1:314–321

    CAS  PubMed  Google Scholar 

  29. Zuerlein MJ, Fried D, Featherstone JDB, Seka W (1999) Optical properties of dental enamel in the mid-IR determined by pulsed photothermal radiometry. IEEE J Sel Top Quant 5(4):1083–1089. https://doi.org/10.1109/2944.796333

    CAS  Google Scholar 

  30. Featherstone JD, Nelson DG (1989) Recent uses of electron microscopy in the study of physico-chemical processes affecting the reactivity of synthetic and biological apatites. Scanning Microsc 3(3):815–827 discussion 827-818

    CAS  PubMed  Google Scholar 

  31. Takagi S, Liao H, Chow LC (2000) Effect of tooth-bound fluoride on enamel demineralization/ remineralization in vitro. Caries Res 34(4):281–288. https://doi.org/10.1159/000016603

    CAS  PubMed  Google Scholar 

  32. ten Cate JM, Featherstone JD (1991) Mechanistic aspects of the interactions between fluoride and dental enamel. Crit Rev Oral Biol Med 2(3):283–296

    PubMed  Google Scholar 

  33. Fried D, Glena RE, Featherstone JD, Seka W (1997) Permanent and transient changes in the reflectance of CO2 laser-irradiated dental hard tissues at lambda = 9.3, 9.6, 10.3, and 10.6 microns and at fluences of 1-20 J/cm2. Lasers Surg Med 20(1):22–31

    CAS  PubMed  Google Scholar 

  34. Kuroda S, Fowler BO (1984) Compositional, structural, and phase changes in vitro laser-irradiated human tooth enamel. Calcif Tissue Int 36:361–369

    CAS  PubMed  Google Scholar 

  35. Fowler BO, Kuroda S (1986) Changes in heated and in laser-irradiated human tooth enamel and their probable effects on solubility. Calcif Tissue Int 38:197–208

    CAS  PubMed  Google Scholar 

  36. Legeros RZ (1991) Calcium phosphates in enamel, dentin and bone. In: Myers HM (ed) Calcium phosphates in oral biology and medicine, vol 15. Karger, Basel, pp 108–129

    Google Scholar 

Download references

Funding

This study is a Principle Investigator Initiated Study and was funded by Convergent Dental, Inc. through University of California, San Francisco’s Contracts & Grants Division.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Rechmann.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Teeth were collected under University of California at San Francisco Institutional Review Board exempt approval conditions for collecting extracted teeth for research purposes.

Informed consent

NA

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rechmann, P., Le, C.Q., Kinsel, R. et al. In vitro CO2 9.3-μm short-pulsed laser caries prevention—effects of a newly developed laser irradiation pattern. Lasers Med Sci 35, 979–989 (2020). https://doi.org/10.1007/s10103-019-02940-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-019-02940-z

Keywords

Navigation