Skip to main content
Log in

In vitro anti-tumor effect of low-power laser irradiation (LPLI) on gastroenterological carcinoma cells

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Primary hepatocellular carcinoma (HCC) and colon carcinoma are two of the most common clinical malignancies along with high morbidity and mortality. As low-power laser irradiation (LPLI) can induce cytotoxicity or cell apoptosis on several types of hyperplasia, LPLI may be a potential alternative treatment for gastroenterological cancers. The current in vitro study focused on LPLI-induced apoptosis and mechanism after 532-nm laser irradiation on two different carcinoma cells. Squamous cell carcinoma (VX2) and murine colon carcinoma (CT26) cells were cultured to test the feasibility of LPLI. The applied fluence varied from 0 to 600 J/cm2. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide analysis, fluorescence imaging, wound healing assay, and cell apoptosis tests were performed 24 h post-irradiation to monitor cellular responses. The current results demonstrated a dose-dependent stimulatory effect of LPLI on the cell viability, migration, and apoptosis of VX2 and CT26 cells. The therapeutic fluence of 600 J/cm2 induced statistically significant inhibition in cell viability. Both the wound healing assay and the cell apoptosis tests confirmed that LPLI with high fluences could inhibit cell migration as well as induce cell apoptosis. The current findings demonstrate that LPLI might be a potential treatment for the carcinoma cells. Further studies will be performed to evaluate the feasibility of LPLI in in vivo tumor models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yang JD, Roberts LR (2010) Hepatocellular carcinoma: a global view[J]. Nat Rev Gastroenterol Hepatol 7(8):448–458

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ni Y, Wang H, Chen F et al (2009) Tumor models and specific contrast agents for small animal imaging in oncology[J]. Methods 48(2):0–138

    Article  Google Scholar 

  3. Ferlay J, Soerjomataram I, Dikshit R et al (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012[J]. Int J Cancer 136(5):E359–E386

    Article  CAS  PubMed  Google Scholar 

  4. Kim KY, Cha IH, Ahn JB et al (2013) Estimating the adjuvant chemotherapy effect in elderly stage II and III colon cancer patients in an observational study [J]. J Surg Oncol 107(6):613–618

    Article  PubMed  Google Scholar 

  5. Bosman Frank T (2014) "Chapter 5.5: colorectal cancer". In Stewart, Bernard W.; Wild, Christopher P. World Cancer Report. the International Agency for Research on Cancer, World Health Organization. pp. 392–402. ISBN 978-92-832-0443-5

  6. Pauser S, Wagner S, Lippmann M et al (1996) Evaluation of efficient chemoembolization mixtures by magnetic resonance imaging therapy monitoring: an experimental study on the VX2 tumor in the rabbit liver [J]. Cancer Res 56(8):1863–1867

    CAS  PubMed  Google Scholar 

  7. Geschwind JFH, Artemov D, Abraham S et al (2000) Chemoembolization of liver tumor in a rabbit model: assessment of tumor cell death with diffusion-weighted MR imaging and histologic analysis [J]. Journal of vascular and interventional radiology : JVIR 11(10):1245–1255

    Article  CAS  PubMed  Google Scholar 

  8. Nass N, Streit S, Wybranski C et al (2017) Validation of VX2 as a hepatocellular carcinoma model: comparison of the molecular reaction of VX2 and HepG2 tumor cells to sorafenib in vitro.[J]. Anticancer Res 37(1):87–93

    Article  PubMed  Google Scholar 

  9. Hashmi JT, Huang YY, Osmani BZ, Sharma SK, Naeser MA, Hamblin MR (2010) Role of low-level laser therapy in neurorehabilitation. PM R 2(12 Suppl 2):S292–S305

    Article  PubMed  PubMed Central  Google Scholar 

  10. Rhee YH, Moon JH, Choi SH et al. 2016 Low-level laser therapy promoted aggressive proliferation and angiogenesis through decreasing of transforming growth factor-β1 and increasing of Akt/hypoxia inducible factor-1α in anaplastic thyroid cancer [J]. Photomedicine & Laser Surgery 34(6)

  11. Chu J, Wu S, Xing D (2010) Survivin mediates self-protection through ROS/cdc25c/CDK1 signaling pathway during tumor cell apoptosis induced by high fluence low-power laser irradiation. Cancer Lett 297(2):207–219

    Article  CAS  PubMed  Google Scholar 

  12. Zhang J, Xing D, Gao X (2008) Low-power laser irradiation activates Src tyrosine kinase through reactive oxygen species-mediated signaling pathway. J Cell Physiol 217(2):518–528

    Article  CAS  PubMed  Google Scholar 

  13. Murayama H, Sadakane K, Yamanoha B, Kogure S (2012) Low power 808-nm laser irradiation inhibits cell proliferation of a human-derived glioblastoma cell line in vitro. Lasers Med Sci 27(1):87–93

    Article  PubMed  Google Scholar 

  14. Schulze PC, Adams V, Busert C, Bettag M, Kahn T (2002) SchoberR. Effects of laser-induced thermotherapy (LITT) on proliferation and apoptosis of glioma cells in rat brain transplantation tumors. Lasers Surg Med 30(3):227–232

    Article  PubMed  Google Scholar 

  15. Wu S, Xing D, Wang F, Chen T, Chen WR (2007) Mechanistic study of apoptosis induced by high-fluence low-power laser irradiation using fluorescence imaging techniques. J Biomed Opt 12(6):064015

    Article  PubMed  Google Scholar 

  16. Huang L, Wu S, Xing D (2011) High fluence low-power laser irradiation induces apoptosis via inactivation of Akt/GSK3beta signaling pathway. J Cell Physiol 226(3):588–601

    Article  CAS  PubMed  Google Scholar 

  17. Frigo L, Luppi JS, Favero GM, Maria DA, Penna SC, Bjordal JM, Bensadoun RJ, Lopes-Martins RA (2009) The effect of low-level laser irradiation (In-Ga-Al-AsP - 660 nm) on melanoma in vitro and in vivo. BMC Cancer 9:404

    Article  PubMed  PubMed Central  Google Scholar 

  18. Belkin M, Zaturunsky B, Schwartz M (1988) A critical review of low energy laser bioeffects [J]. Lasers & Light in Ophthalmology 2(1):63–71

    Google Scholar 

  19. Karu T . Photobiology of low-power laser effects.[J]. Health Phys, 1989, 56(5):691–704

    Article  CAS  PubMed  Google Scholar 

  20. Conlan MJ, Rapley JW, Cobb CM (1996) Biostimulation of wound healing by low-energy laser irradiation a review [J]. J Clin Periodontol 23(5):492–496

    Article  CAS  PubMed  Google Scholar 

  21. Passarella S, Casamassima E, Molinari S et al (1984) Increase of proton electrochemical potential and ATP synthesis in rat liver mitochondria irradiated in vitro by helium-neon laser.[J]. FEBS Lett 175(1):95–99

    Article  CAS  PubMed  Google Scholar 

  22. Yu M, Naim JO, Lanzafame RJ (1994) The effects of photo-irradiation on the secretion of TGF and PDGF from fibroblasts in vitro. Lasers Surg Med Suppl 6:8

    Google Scholar 

  23. Liang WZ, Liu PF, Fu E et al (2015) Selective cytotoxic effects of low-power laser irradiation on human oral cancer cells [J]. Lasers Surg Med 47(9):756–764

    Article  PubMed  Google Scholar 

  24. Giovanella BC, Stehlin JS Jr, Morgan AC (1976) Selective lethal effect of supranormal temperatures on human neoplastic cells. [J] Cancer Res 36(1):3944–3950

    CAS  Google Scholar 

  25. Meirow D, Biederman H, Anderson RA et al (2010) Toxicity of chemotherapy and radiation on female reproduction. [J]. Clinical Obstetrics & Gynecology 53(4):727–739

    Article  Google Scholar 

  26. Clarke M, Collins R, Darby S et al (2007) Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials. [J]. Chinese Journal of Breast Disease 366(9503):2087–2106

    Google Scholar 

  27. Shao J, Griffin RJ, Galanzha EI, Kim JW, Koonce N, Webber J, Mustafa T, Biris AS, Nedosekin DA, Zharov VP (2013) Photothermal nanodrugs: potential of TNF-gold nanospheres for cancer theranostics. Sci Rep 3:1293

    Article  PubMed  PubMed Central  Google Scholar 

  28. Fisher JW, Sarkar S, Buchanan CF, Szot CS, Whitney J, Hatcher HC, Torti SV, Rylander CG, Rylander MN (2010) Photothermal response of human and murine cancer cells to multiwalled carbon nanotubes after laser irradiation. Cancer Res 70(23):9855–9864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Burke A, Ding X, Singh R, Kraft RA, Levi-Polyachenko N, Rylander MN, Szot C, Buchanan C, Whitney J, Fisher J, Hatcher HC, D’Agostino R Jr, Kock ND, Ajayan PM, Carroll DL, Akman S, Torti FM, Torti SV (2009) Long-term survival following a single treatment of kidney tumors with multiwalled carbon nanotubes and near-infrared radiation. Proc Natl Acad Sci U S A 106(31):12897–12902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bravo-Cordero JJ, Hodgson L, Condeelis J (2012) Directed cell invasion and migration during metastasis. Curr Opin Cell Biol 24(2):277–283

    Article  CAS  PubMed  Google Scholar 

  31. Entschladen F, Drell TL, Lang K, Joseph J, Zaenker KS (2004) Tumour-cell migration, invasion, and metastasis: navigation by neurotransmitters. Lancet Oncol 5(4):254–258

    Article  CAS  PubMed  Google Scholar 

  32. Aravalli RN, Steer CJ, Sahin MB et al (2010) Stem cell origins and animal models of hepatocellular carcinoma [J]. Dig Dis Sci 55(5):1241–1250

    Article  PubMed  Google Scholar 

Download references

Funding

This research was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant number: HI16C1017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun Wook Kang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Y., Lee, Y., Kim, H. et al. In vitro anti-tumor effect of low-power laser irradiation (LPLI) on gastroenterological carcinoma cells. Lasers Med Sci 35, 677–685 (2020). https://doi.org/10.1007/s10103-019-02869-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-019-02869-3

Keywords

Navigation