Skip to main content

Advertisement

Log in

The effect of low-level laser irradiation on hyperglycemia-induced inflammation in human gingival fibroblasts

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Hyperglycemia-induced inflammation can greatly increase the risk of periodontal disease in people with diabetes. Low-level laser irradiation (LLLI) has been used for wound healing and anti-inflammation in many cases, and LLLI is known to inhibit the lipopolysaccharide (LPS)-stimulated inflammatory response. However, the therapeutic effect of LLLI in diabetes patients with periodontitis remains unknown. In this study, we cultured human gingival fibroblasts (HGFs) in high-glucose medium (35 mM) to mimic a hyperglycemic environment, and then measured the anti-inflammatory effect of LLLI by assessing the expression of pro-inflammatory genes including tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, and IL-8 by quantitative real-time polymerase chain reaction. The results demonstrated no significant inflammatory response in HGFs cultured in mannitol medium and in those treated only with LLLI. However, HGFs cultured only in high-glucose medium showed significantly higher expression of pro-inflammatory cytokine than in those treated together with LLLI. We then observed that LLLI reduced the expression of pro-inflammatory cytokines in HGFs cultured in high-glucose medium by modulating cAMP signaling. We also investigated whether antioxidant (vitamin C) treatment reduced the inflammatory effect of oxidative stress in HGFs cultured in high-glucose medium but found no additive effect upon co-treatment with LLLI, suggesting that LLLI may activate cAMP signaling, but not reactive oxygen species (ROS) signaling, to reduce the high glucose-induced inflammation. In conclusion, LLLI may have an anti-inflammatory effect on HGFs in a high glucose environment and may benefit the treatment of periodontal disease in diabetes patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mealey BL, Oates TW (2006) Diabetes mellitus and periodontal diseases. J Periodontol 77(8):1289–1303. https://doi.org/10.1902/jop.2006.050459

    Article  CAS  PubMed  Google Scholar 

  2. Amir J, Waite M, Tobler J et al (2011) The role of hyperglycemia in mechanisms of exacerbated inflammatory responses within the oral cavity. Cell Immunol 272(1):45–52. https://doi.org/10.1016/j.cellimm.2011.09.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ryan ME, Carnu O, Kamer A (2003) The influence of diabetes on the periodontal tissues. J Am Dent Assoc 134 Spec No:34S–40S

    Article  PubMed  Google Scholar 

  4. Chang PC, Chung MC, Wang YP et al (2012) Patterns of diabetic periodontal wound repair: a study using micro-computed tomography and immunohistochemistry. J Periodontol 83(5):644–652. https://doi.org/10.1902/jop.2011.110325

    Article  PubMed  Google Scholar 

  5. Mealey BL (2006) Periodontal disease and diabetes. A two-way street J Am Dent Assoc 137(Suppl):26S–31S

    Article  PubMed  Google Scholar 

  6. Donath MY, Shoelson SE (2011) Type 2 diabetes as an inflammatory disease. Nat Rev Immunol 11(2):98–107. https://doi.org/10.1038/nri2925

    Article  CAS  PubMed  Google Scholar 

  7. Bajaj S, Khan A (2012) Antioxidants and diabetes. Indian J Endocrinol Metab 16(Suppl 2):S267–S271. https://doi.org/10.4103/2230-8210.104057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rahimi-Madiseh M, Malekpour-Tehrani A, Bahmani M et al (2016) The research and development on the antioxidants in prevention of diabetic complications. Asian Pac J Trop Med 9(9):825–831. https://doi.org/10.1016/j.apjtm.2016.07.001

    Article  CAS  PubMed  Google Scholar 

  9. Niu Y, DesMarais TL, Tong Z et al (2015) Oxidative stress alters global histone modification and DNA methylation. Free Radic Biol Med 82:22–28. https://doi.org/10.1016/j.freeradbiomed.2015.01.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Martinez Leo EE, Acevedo Fernandez JJ, Segura Campos MR (2016) Biopeptides with antioxidant and anti-inflammatory potential in the prevention and treatment of diabesity disease. Biomed Pharmacother 83:816–826. https://doi.org/10.1016/j.biopha.2016.07.051

    Article  CAS  PubMed  Google Scholar 

  11. Shanmugam N, Reddy MA, Guha M et al (2003) High glucose-induced expression of proinflammatory cytokine and chemokine genes in monocytic cells. Diabetes 52(5):1256–1264

    Article  CAS  PubMed  Google Scholar 

  12. Zong H, Ward M, Madden A et al (2010) Hyperglycaemia-induced pro-inflammatory responses by retinal Muller glia are regulated by the receptor for advanced glycation end-products (RAGE). Diabetologia 53(12):2656–2666. https://doi.org/10.1007/s00125-010-1900-z

    Article  CAS  PubMed  Google Scholar 

  13. Quan Y, Jiang CT, Xue B et al (2011) High glucose stimulates TNFalpha and MCP-1 expression in rat microglia via ROS and NF-kappaB pathways. Acta Pharmacol Sin 32(2):188–193. https://doi.org/10.1038/aps.2010.174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nomura K, Yamaguchi M, Abiko Y (2001) Inhibition of interleukin-1beta production and gene expression in human gingival fibroblasts by low-energy laser irradiation. Lasers Med Sci 16(3):218–223

    Article  CAS  PubMed  Google Scholar 

  15. Sakurai Y, Yamaguchi M, Abiko Y (2000) Inhibitory effect of low-level laser irradiation on LPS-stimulated prostaglandin E2 production and cyclooxygenase-2 in human gingival fibroblasts. Eur J Oral Sci 108(1):29–34

    Article  CAS  PubMed  Google Scholar 

  16. Walsh LJ (1997) The current status of low level laser therapy in dentistry. Part 1. Soft tissue applications. Aust Dent J 42(4):247–254

    Article  CAS  PubMed  Google Scholar 

  17. Hashmi JT, Huang YY, Osmani BZ et al (2010) Role of low-level laser therapy in neurorehabilitation. PM R 2(12 Suppl 2):S292–S305. https://doi.org/10.1016/j.pmrj.2010.10.013

    Article  PubMed  PubMed Central  Google Scholar 

  18. Walsh LJ (2003) The current status of laser applications in dentistry. Aust Dent J 48(3):146–155 quiz 198

    Article  CAS  PubMed  Google Scholar 

  19. Karlsson MR, Diogo Lofgren CI, Jansson HM (2008) The effect of laser therapy as an adjunct to non-surgical periodontal treatment in subjects with chronic periodontitis: a systematic review. J Periodontol 79(11):2021–2028. https://doi.org/10.1902/jop.2008.080197

    Article  PubMed  Google Scholar 

  20. Wu JY, Chen CH, Wang CZ et al (2013) Low-power laser irradiation suppresses inflammatory response of human adipose-derived stem cells by modulating intracellular cyclic AMP level and NF-kappaB activity. PLoS One 8(1):e54067. https://doi.org/10.1371/journal.pone.0054067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Markert CL (1984) Lactate dehydrogenase. Biochemistry and function of lactate dehydrogenase. Cell Biochem Funct 2(3):131–134. https://doi.org/10.1002/cbf.290020302

    Article  CAS  PubMed  Google Scholar 

  22. Nonaka K, Kajiura Y, Bando M et al (2018) Advanced glycation end-products increase IL-6 and ICAM-1 expression via RAGE, MAPK and NF-kappaB pathways in human gingival fibroblasts. J Periodontal Res 53(3):334–344. https://doi.org/10.1111/jre.12518

    Article  CAS  PubMed  Google Scholar 

  23. Chiu HC, Fu MM, Yang TS et al (2017) Effect of high glucose, Porphyromonas gingivalis lipopolysaccharide and advanced glycation end-products on production of interleukin-6/-8 by gingival fibroblasts. J Periodontal Res 52(2):268–276. https://doi.org/10.1111/jre.12391

    Article  CAS  PubMed  Google Scholar 

  24. Jiang SY, Wei CC, Shang TT et al (2012) High glucose induces inflammatory cytokine through protein kinase C-induced toll-like receptor 2 pathway in gingival fibroblasts. Biochem Biophys Res Commun 427(3):666–670. https://doi.org/10.1016/j.bbrc.2012.09.118

    Article  CAS  PubMed  Google Scholar 

  25. Wu Y, Song LT, Li JS et al (2017) MicroRNA-126 regulates inflammatory cytokine secretion in human gingival fibroblasts under high glucose via targeting tumor necrosis factor receptor associated factor 6. J Periodontol 88(11):e179–e187. https://doi.org/10.1902/jop.2017.170091

    Article  CAS  PubMed  Google Scholar 

  26. Madonna R, Geng YJ, Shelat H et al (2014) High glucose-induced hyperosmolarity impacts proliferation, cytoskeleton remodeling and migration of human induced pluripotent stem cells via aquaporin-1. Biochim Biophys Acta 1842(11):2266–2275. https://doi.org/10.1016/j.bbadis.2014.07.030

    Article  CAS  PubMed  Google Scholar 

  27. Liu T, Gong J, Chen Y et al (2013) Periodic vs constant high glucose in inducing pro-inflammatory cytokine expression in human coronary artery endothelial cells. Inflamm Res 62(7):697–701. https://doi.org/10.1007/s00011-013-0623-2

    Article  CAS  PubMed  Google Scholar 

  28. Correa F, Lopes Martins RA, Correa JC et al (2007) Low-level laser therapy (GaAs lambda = 904 nm) reduces inflammatory cell migration in mice with lipopolysaccharide-induced peritonitis. Photomed Laser Surg 25(4):245–249. https://doi.org/10.1089/pho.2007.2079

    Article  PubMed  Google Scholar 

  29. Boschi ES, Leite CE, Saciura VC et al (2008) Anti-inflammatory effects of low-level laser therapy (660 nm) in the early phase in carrageenan-induced pleurisy in rat. Lasers Surg Med 40(7):500–508. https://doi.org/10.1002/lsm.20658

    Article  PubMed  Google Scholar 

  30. Pires D, Xavier M, Araujo T et al (2011) Low-level laser therapy (LLLT; 780 nm) acts differently on mRNA expression of anti- and pro-inflammatory mediators in an experimental model of collagenase-induced tendinitis in rat. Lasers Med Sci 26(1):85–94. https://doi.org/10.1007/s10103-010-0811-z

    Article  PubMed  Google Scholar 

  31. Lee JH, Chiang MH, Chen PH et al (2018) Anti-inflammatory effects of low-level laser therapy on human periodontal ligament cells: in vitro study. Lasers Med Sci 33(3):469–477. https://doi.org/10.1007/s10103-017-2376-6

    Article  PubMed  Google Scholar 

  32. Hawkins DH, Abrahamse H (2006) The role of laser fluence in cell viability, proliferation, and membrane integrity of wounded human skin fibroblasts following helium-neon laser irradiation. Lasers Surg Med 38(1):74–83. https://doi.org/10.1002/lsm.20271

    Article  PubMed  Google Scholar 

  33. Houreld NN, Sekhejane PR, Abrahamse H (2010) Irradiation at 830 nm stimulates nitric oxide production and inhibits pro-inflammatory cytokines in diabetic wounded fibroblast cells. Lasers Surg Med 42(6):494–502. https://doi.org/10.1002/lsm.20812

    Article  PubMed  Google Scholar 

  34. Goralczyk K, Szymanska J, Szot K et al (2016) Low-level laser irradiation effect on endothelial cells under conditions of hyperglycemia. Lasers Med Sci 31(5):825–831. https://doi.org/10.1007/s10103-016-1880-4

    Article  PubMed  PubMed Central  Google Scholar 

  35. Giacco F, Brownlee M (2010) Oxidative stress and diabetic complications. Circ Res 107(9):1058–1070. https://doi.org/10.1161/CIRCRESAHA.110.223545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ulker S, McMaster D, McKeown PP et al (2004) Antioxidant vitamins C and E ameliorate hyperglycaemia-induced oxidative stress in coronary endothelial cells. Diabetes Obes Metab 6(6):442–451. https://doi.org/10.1111/j.1462-8902.2004.00443.x

    Article  CAS  PubMed  Google Scholar 

  37. Ellulu MS, Rahmat A, Patimah I et al (2015) Effect of vitamin C on inflammation and metabolic markers in hypertensive and/or diabetic obese adults: a randomized controlled trial. Drug Des Devel Ther 9:3405–3412. https://doi.org/10.2147/DDDT.S83144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yang WS, Seo JW, Han NJ et al (2008) High glucose-induced NF-kappaB activation occurs via tyrosine phosphorylation of IkappaBalpha in human glomerular endothelial cells: involvement of Syk tyrosine kinase. Am J Physiol Renal Physiol 294(5):F1065–F1075. https://doi.org/10.1152/ajprenal.00381.2007

    Article  CAS  PubMed  Google Scholar 

  39. Wei M, Li Z, Xiao L et al (2015) Effects of ROS-relative NF-kappaB signaling on high glucose-induced TLR4 and MCP-1 expression in podocyte injury. Mol Immunol 68(2 Pt A):261–271. https://doi.org/10.1016/j.molimm.2015.09.002

    Article  CAS  PubMed  Google Scholar 

  40. Rizzi CF, Mauriz JL, Freitas Correa DS et al (2006) Effects of low-level laser therapy (LLLT) on the nuclear factor (NF)-kappaB signaling pathway in traumatized muscle. Lasers Surg Med 38(7):704–713. https://doi.org/10.1002/lsm.20371

    Article  PubMed  Google Scholar 

  41. Yin K, Zhu R, Wang S et al (2017) Low level laser (LLL) attenuate LPS-induced inflammatory responses in mesenchymal stem cells via the suppression of NF-kappaB signaling pathway in vitro. PLoS One 12(6):e0179175. https://doi.org/10.1371/journal.pone.0179175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Migliario M, Pittarella P, Fanuli M et al (2014) Laser-induced osteoblast proliferation is mediated by ROS production. Lasers Med Sci 29(4):1463–1467. https://doi.org/10.1007/s10103-014-1556-x

    Article  PubMed  Google Scholar 

  43. Chen AC, Arany PR, Huang YY et al (2011) Low-level laser therapy activates NF-kB via generation of reactive oxygen species in mouse embryonic fibroblasts. PLoS One 6(7):e22453. https://doi.org/10.1371/journal.pone.0022453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Obradovic R, Kesic L, Mihailovic D et al (2012) Low-level lasers as an adjunct in periodontal therapy in patients with diabetes mellitus. Diabetes Technol Ther 14(9):799–803. https://doi.org/10.1089/dia.2012.0027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Obradovic R, Kesic L, Mihailovic D et al (2013) A histological evaluation of a low-level laser therapy as an adjunct to periodontal therapy in patients with diabetes mellitus. Lasers Med Sci 28(1):19–24. https://doi.org/10.1007/s10103-012-1058-7

    Article  PubMed  Google Scholar 

Download references

Funding

This study was funded by the Ministry of Science and Technology of Taiwan (MOST-104-2314-B-037-059-) and Kaohsiung Medical University Aim for the TOP Universities Grants (KMU-TP103B08 and KMU-TP104B11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Hsiung Wang.

Ethics declarations

Ethical approval

This study was independently reviewed and approved by the human subjects ethics board of Kaohsiung Medical University and was conducted in accordance with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, KT.D., Chiang, MH., Chen, PH. et al. The effect of low-level laser irradiation on hyperglycemia-induced inflammation in human gingival fibroblasts. Lasers Med Sci 34, 913–920 (2019). https://doi.org/10.1007/s10103-018-2675-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-018-2675-6

Keywords

Navigation