Skip to main content
Log in

The changing landscape of dermatology practice: melanoma and pump-probe laser microscopy

  • Review Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

A Correction to this article was published on 05 October 2017

This article has been updated

Abstract

To present current melanoma diagnosis, staging, prognosis, and treatment algorithms and how recent advances in laser pump-probe microscopy will fill in the gaps in our clinical understanding. Expert opinion and significantly cited articles identified in SCOPUS were used in conjunction with a pubmed database search on Melanoma practice guidelines from the last 10 years. Significant advances in melanoma treatment have been made over the last decade. However, proper treatment algorithm and prognostic information per melanoma stage remain controversial. The next step for providers will involve the identification of patient population(s) that can benefit from recent advances. One method of identifying potential patients is through new laser imaging techniques. Pump-probe laser microscopy has been shown to correctly identify nevi from melanoma and furthermore stratify melanoma by aggressiveness. The recent development of effective adjuvant therapies for melanoma is promising and should be utilized on appropriate patient populations that can potentially be identified using pump-probe laser microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 05 October 2017

    The published online version contains mistake. Warren S. Warren was not included in the author group section. Corrected author group section is shown above.

References

  1. Board, P.D.Q.A.T.E (2002) Melan oma treatment (PDQ(R)): health professional version, in PDQ cancer information summaries. National Cancer Institute (US), Bethesda (MD)

    Google Scholar 

  2. Dickson PV, Gershenwald JE (2011) Staging and prognosis of cutaneous melanoma. Surg Oncol Clin N Am 20(1):1–17

    Article  PubMed  PubMed Central  Google Scholar 

  3. Coit DG et al (2016) Melanoma, version 2.2016, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw 14(4):450–473

    Article  Google Scholar 

  4. Whiteman DC, Baade PD, Olsen CM (2015) More people die from thin melanomas (1 mm) than from thick melanomas (> 4 mm) in Queensland, Australia. J Invest Dermatol 135(4):1190–1193

    Article  CAS  PubMed  Google Scholar 

  5. Landow SM, Gjelsvik A, Weinstock MA (2017) Mortality burden and prognosis of thin melanomas overall and by subcategory of thickness, SEER registry data, 1992–2013. J Am Acad Dermatol 76(2):258–263

    Article  PubMed  Google Scholar 

  6. Hieken TJ et al (2015) The effect of the AJCC 7th edition change in T1 melanoma substaging on national utilization and outcomes of sentinel lymph node biopsy for thin melanoma. Melanoma Res 25(2):157–163

    Article  PubMed  Google Scholar 

  7. Koskivuo I et al (2005) Sentinel node metastasectomy in thin ≤ 1-mm melanoma. Langenbeck's Arch Surg 390(5):403–407

    Article  Google Scholar 

  8. Hu Y et al (2015) Utility of sentinel lymph node biopsy for solitary dermal melanomas. J Surg Oncol 111(7):800–807

    Article  PubMed  PubMed Central  Google Scholar 

  9. Howard JH et al (2012) Metastasectomy for distant metastatic melanoma: analysis of data from the first Multicenter Selective Lymphadenectomy Trial (MSLT-I). Ann Surg Oncol 19(8):2547–2555

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mosquera C et al (2017) Population-based analysis of completion lymphadenectomy in intermediate-thickness melanoma. Ann Surg Oncol 24(1):127–134

    Article  PubMed  Google Scholar 

  11. Morton DL (2012) Overview and update of the phase III Multicenter Selective Lymphadenectomy Trials (MSLT-I and MSLT-II) in melanoma. Clin Exp Metastasis 29(7):699–706

    Article  PubMed  PubMed Central  Google Scholar 

  12. Carson WE 3rd (2015) ASCO 2015 update on melanoma. Surg Oncol 24(4):363–365

    Article  PubMed  Google Scholar 

  13. Madu MF, Wouters MW, van Akkooi AC (2017) Sentinel node biopsy in melanoma: Current controversies addressed. Eur J Surg Oncol 43(3):517–533

    Article  CAS  PubMed  Google Scholar 

  14. van Akkooi AC et al (2016) Surgical management and adjuvant therapy for high-risk and metastatic melanoma. Am Soc Clin Oncol Educ Book 35:e505–e514

    Article  PubMed  Google Scholar 

  15. Atkins MB (1997) The treatment of metastatic melanoma with chemotherapy and biologics. Curr Opin Oncol 9(2):205–213

    Article  CAS  PubMed  Google Scholar 

  16. Ridolfi R et al (2002) Cisplatin, dacarbazine with or without subcutaneous interleukin-2, and interferon alpha-2b in advanced melanoma outpatients: results from an Italian multicenter phase III randomized clinical trial. J Clin Oncol 20(6):1600–1607

    Article  CAS  PubMed  Google Scholar 

  17. Eton O et al (2002) Sequential biochemotherapy versus chemotherapy for metastatic melanoma: results from a phase III randomized trial. J Clin Oncol 20(8):2045–2052

    Article  CAS  PubMed  Google Scholar 

  18. Finn L, Markovic SN, Joseph RW (2012) Therapy for metastatic melanoma: the past, present, and future. BMC Med 10:23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Korn EL et al (2008) Meta-analysis of phase II cooperative group trials in metastatic stage IV melanoma to determine progression-free and overall survival benchmarks for future phase II trials. J Clin Oncol 26(4):527–534

    Article  PubMed  Google Scholar 

  20. Atkins MB et al (2000) High-dose recombinant interleukin-2 therapy in patients with metastatic melanoma: long-term survival update. Cancer J Sci Am 6(Suppl 1):S11–S14

    PubMed  Google Scholar 

  21. Hodi FS et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lemech C, Infante J, Arkenau HT (2012) The potential for BRAF V600 inhibitors in advanced cutaneous melanoma: rationale and latest evidence. Ther Adv Med Oncol 4(2):61–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Halaban R et al (2010) PLX4032, a selective BRAF(V600E) kinase inhibitor, activates the ERK pathway and enhances cell migration and proliferation of BRAF melanoma cells. Pigment Cell Melanoma Res 23(2):190–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sala E et al (2008) BRAF silencing by short hairpin RNA or chemical blockade by PLX4032 leads to different responses in melanoma and thyroid carcinoma cells. Mol Cancer Res 6(5):751–759

    Article  CAS  PubMed  Google Scholar 

  25. Hauschild A et al (2012) Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet 380(9839):358–365

    Article  CAS  PubMed  Google Scholar 

  26. McArthur GA et al (2014) Safety and efficacy of vemurafenib in BRAF(V600E) and BRAF(V600K) mutation-positive melanoma (BRIM-3): extended follow-up of a phase 3, randomised, open-label study. Lancet Oncol 15(3):323–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sosman JA et al (2012) Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N Engl J Med 366(8):707–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Robert C et al (2015) Improved overall survival in melanoma with combined dabrafenib and trametinib. N Engl J Med 372(1):30–39

    Article  PubMed  Google Scholar 

  29. Long GV et al (2015) Dabrafenib and trametinib versus dabrafenib and placebo for Val600 BRAF-mutant melanoma: a multicentre, double-blind, phase 3 randomised controlled trial. Lancet 386(9992):444–451

    Article  CAS  PubMed  Google Scholar 

  30. Buchbinder EI, Desai A (2016) CTLA-4 and PD-1 pathways: similarities, differences, and implications of their inhibition. Am J Clin Oncol 39(1):98–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kohlhapp FJ, Kaufman HL (2016) Molecular pathways: mechanism of action for talimogene laherparepvec, a new oncolytic virus immunotherapy. Clin Cancer Res 22(5):1048–1054

    Article  CAS  PubMed  Google Scholar 

  32. Grigg C et al (2016) Talimogene laherparepvec (T-Vec) for the treatment of melanoma and other cancers. Semin Oncol 43(6):638–646

    Article  CAS  PubMed  Google Scholar 

  33. Agarwala SS (2016) The role of intralesional therapies in melanoma. Oncology (Williston Park) 30(5):436–441

    Google Scholar 

  34. Robert C et al (2015) Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med 372(26):2521–2532

    Article  CAS  PubMed  Google Scholar 

  35. Robert C et al (2015) Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med 372(4):320–330

    Article  CAS  PubMed  Google Scholar 

  36. Larkin J et al (2015) Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med 2015(373):23–34

    Article  Google Scholar 

  37. Weber JS et al (2015) Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol 16(4):375–384

    Article  CAS  PubMed  Google Scholar 

  38. Postow MA et al (2015) Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N Engl J Med 372(21):2006–2017

    Article  PubMed  Google Scholar 

  39. Puzanov, I., et al. (2015) Efficacy based on tumor PD-L1 expression in KEYNOTE-002, a randomized comparison of pembrolizumab (pembro; MK-3475) versus chemotherapy in patients (pts) with ipilimumab-refractory (IPI-R) advanced melanoma (MEL). Am Soc Clin Oncol

  40. Coit DG et al (2016) NCCN guidelines insights: melanoma, version 3.2016. J Natl Compr Cancer Netw 14(8):945–958

    Article  Google Scholar 

  41. Eggermont AM et al (2015) Adjuvant ipilimumab versus placebo after complete resection of high-risk stage III melanoma (EORTC 18071): a randomised, double-blind, phase 3 trial. Lancet Oncol 16(5):522–530

    Article  CAS  PubMed  Google Scholar 

  42. Robles FE et al (2015) Pump-probe imaging of pigmented cutaneous melanoma primary lesions gives insight into metastatic potential. Biomed Opt Express 6(9):3631–3645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wilson JW et al (2013) Imaging microscopic pigment chemistry in conjunctival melanocytic lesions using pump-probe laser microscopy. Invest Ophthalmol Vis Sci 54(10):6867–6876

    Article  PubMed  PubMed Central  Google Scholar 

  44. Robles, F.E., et al. (2017) Label-free imaging of female genital tract Melanocytic lesions with pump-probe microscopy: a promising diagnostic tool. J Low Genit Tract Dis

  45. March J et al (2015) Practical application of new technologies for melanoma diagnosis: part II. Molecular approaches. J Am Acad Dermatol 72(6):943–958 quiz 959-60

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles J. Puza.

Additional information

A correction to this article is available online at https://doi.org/10.1007/s10103-017-2339-y.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puza, C.J., Mosca, P.J. The changing landscape of dermatology practice: melanoma and pump-probe laser microscopy. Lasers Med Sci 32, 1935–1939 (2017). https://doi.org/10.1007/s10103-017-2319-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-017-2319-2

Keywords

Navigation