Skip to main content

Advertisement

Log in

Assessment of the effect of laser irradiations at different wavelengths (660, 810, 980, and 1064 nm) on autophagy in a rat model of mucositis

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

It is known that high-dose radiation has an effect on tissue healing, but tissue healing does not occur when low dose radiation is applied. To clarify this issue, we compare the treatment success of low dose radiation with programmed cell death mechanisms on wounded tissue. In this study, we aimed to investigate the interactions of low and high-dose radiation using an autophagic mechanism. We included 35 adult Wistar-Albino rats in this study. All animals were injected with 100 mg/kg of 5-fluorouracil (5-FU) on the first day and 65 mg/kg of 5-FU on the third day. The tips of 18-gauge needles were used to develop a superficial scratching on the left cheek pouch mucosa by dragging in a linear movement on third and fifth days. After mucositis formation was clinically detected, animals were divided into five groups (n = 7). Different wavelengths of laser irradiations (1064 nm, Fidelis Plus, Fotona, Slovenia; 980 nm, FOX laser, A.R.C., Germany; 810 nm, Fotona XD, Fotona, Slovenia; 660 nm, HELBO, Medizintechnik GmbH, Wels, Austria) were performed on four groups once daily for 4 days. The laser irradiation was not performed on the control group. To get the tissue from the left cheek at the end of fourth day from all animals, oval excisional biopsy was performed. Molecular analysis assessments of pathological and normal tissue taken were performed. For this purpose, the expression analysis of autophagy genes was performed. The results were evaluated by normalization and statistics analysis. We found that Ulk1, Beclin1, and Atg5 expression levels were increased in the rats when the Nd:YAG laser was applied. This increase showed that a 1064-nm laser is needed to activate the autophagic mechanism. However, in the diode applications, we found that Beclin1, Atg10, Atg5, and Atg7 expressions numerically decreased. Atg5 is responsible for the elongation of autophagosome. Becn1 is a control gene in the control mechanism of autophagy. The reduction of the expression of these genes leads us to think that it may depend on the effect of drug (5-FU) used to form model. Expressions of therapeutic genes increase to ensure hemostasis, but in our study, expressions were found to decrease. More detailed studies are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Simsek F, Vatansever HS (2014) Apoptotik ve otofajik ölümlerde hücre içi organizasyon. Yeni Tıp Dergisi 31:6–11

    Google Scholar 

  2. Arden N, Betenbaugh MJ (2006) Regulating apoptosis in mammalian cell cultures. Cytotechnology 50:77–92

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Los M, Mozoluk M, Ferrari D, Stepczynska A, Stroh C, Renz A, Herceg Z, Wang ZQ, Schulze-Osthoff K (2002) Activation and caspase-mediated inhibition of PARP: a molecular switch between fibroblast necrosis and apoptosis in death receptor signaling. Mol Biol Cell 13:978–988

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Hands SL, Proud CG, Wyttenbach A (2009) mTOR’s role in ageing: protein synthesis or autophagy? Aging (Albany NY) 1:586–597

    CAS  Google Scholar 

  5. Devrim Öz Arslan GK, Devrim Gözüaçık (2011) Otofaji: Bir Hücresel Stres Yanıtı ve Ölüm Mekanizması. Acıbadem Üniversitesi Sağlık Bilimleri Dergisi

  6. Galluzzi L, Maiuri MC, Vitale I, Zischka H, Castedo M, Zitvogel L, Kroemer G (2007) Cell death modalities: classification and pathophysiological implications. Cell Death Differ 14:1237–1243

    Article  CAS  PubMed  Google Scholar 

  7. Jain MV, Paczulla AM, Klonisch T, Dimgba FN, Rao SB, Roberg K, Schweizer F, Lengerke C, Davoodpour P, Palicharla VR, Maddika S, Los M (2013) Interconnections between apoptotic, autophagic and necrotic pathways: implications for cancer therapy development. J Cell Mol Med 17:12–29

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Xie Z, Klionsky DJ (2007) Autophagosome formation: core machinery and adaptations. Nat Cell Biol 9:1102–1109

    Article  CAS  PubMed  Google Scholar 

  9. Lihuan D, Jingcun Z, Ning J, Guozeng W, Yiwei C, Wei L, Jing Q, Yuanfang Z, Gang C (2014) Photodynamic therapy with the novel photosensitizer chlorophyllin f induces apoptosis and autophagy in human bladder cancer cells. Lasers Surg Med 46:319–334

    Article  PubMed  Google Scholar 

  10. Maejima Y, Kyoi S, Zhai P, Liu T, Li H, Ivessa A, Sciarretta S, Del Re DP, Zablocki DK, Hsu CP, Lim DS, Isobe M, Sadoshima J (2013) Mst1 inhibits autophagy by promoting the interaction between Beclin1 and Bcl-2. Nat Med 19:1478–1488

    Article  CAS  PubMed  Google Scholar 

  11. Gustafsson AB, Gottlieb RA (2009) Autophagy in ischemic heart disease. Circ Res 104:150–158

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451:1069–1075

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Fukuda T, Ahearn M, Roberts A, Mattaliano RJ, Zaal K, Ralston E, Plotz PH, Raben N (2006) Autophagy and mistargeting of therapeutic enzyme in skeletal muscle in Pompe disease. Mol Ther 14:831–839

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Kim HR, Luo Y, Li G, Kessel D (1999) Enhanced apoptotic response to photodynamic therapy after bcl-2 transfection. Cancer Res 59:3429–3432

    CAS  PubMed  Google Scholar 

  15. Xue LY, Chiu SM, Oleinick NL (2001) Photochemical destruction of the Bcl-2 oncoprotein during photodynamic therapy with the phthalocyanine photosensitizer Pc 4. Oncogene 20:3420–3427

    Article  CAS  PubMed  Google Scholar 

  16. Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, Packer M, Schneider MD, Levine B (2005) Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122:927–939

    Article  CAS  PubMed  Google Scholar 

  17. Bampton ET, Goemans CG, Niranjan D, Mizushima N, Tolkovsky AM (2005) The dynamics of autophagy visualized in live cells: from autophagosome formation to fusion with endo/lysosomes. Autophagy 1:23–36

    Article  CAS  PubMed  Google Scholar 

  18. Kessel D, Castelli M, Reiners JJ Jr (2002) Apoptotic response to photodynamic therapy versus the Bcl-2 antagonist HA14-1. Photochem Photobiol 76:314–319

    Article  CAS  PubMed  Google Scholar 

  19. Kessel D, Vicente MG, Reiners JJ Jr (2006) Initiation of apoptosis and autophagy by photodynamic therapy. Lasers Surg Med 38:482–488

    Article  PubMed Central  PubMed  Google Scholar 

  20. Buytaert E, Callewaert G, Hendrickx N, Scorrano L, Hartmann D, Missiaen L, Vandenheede JR, Heirman I, Grooten J, Agostinis P (2006) Role of endoplasmic reticulum depletion and multidomain proapoptotic BAX and BAK proteins in shaping cell death after hypericin-mediated photodynamic therapy. FASEB J 20:756–758

    CAS  PubMed  Google Scholar 

  21. Buytaert E, Matroule JY, Durinck S, Close P, Kocanova S, Vandenheede JR, de Witte PA, Piette J, Agostinis P (2008) Molecular effectors and modulators of hypericin-mediated cell death in bladder cancer cells. Oncogene 27:1916–1929

    Article  CAS  PubMed  Google Scholar 

  22. Kessel D, Oleinick NL (2009) Initiation of autophagy by photodynamic therapy. Methods Enzymol 453:1–16

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Kessel D, Reiners JJ Jr (2007) Apoptosis and autophagy after mitochondrial or endoplasmic reticulum photodamage. Photochem Photobiol 83:1024–1028

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Kessel D, Castelli M, Reiners JJ (2005) Ruthenium red-mediated suppression of Bcl-2 loss and Ca(2+) release initiated by photodamage to the endoplasmic reticulum: scavenging of reactive oxygen species. Cell Death Differ 12:502–511

    Article  CAS  PubMed  Google Scholar 

  25. Hoyer-Hansen M, Bastholm L, Szyniarowski P, Campanella M, Szabadkai G, Farkas T, Bianchi K, Fehrenbacher N, Elling F, Rizzuto R, Mathiasen IS, Jaattela M (2007) Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-beta, and Bcl-2. Mol Cell 25:193–205

    Article  PubMed  Google Scholar 

  26. Swerdlow S, Distelhorst CW (2007) Bcl-2-regulated calcium signals as common mediators of both apoptosis and autophagy. Dev Cell 12:178–179

    Article  CAS  PubMed  Google Scholar 

  27. Coluzzi DJ (2004) Fundamentals of dental lasers: science and instruments. Dent Clin North Am 48:751–770, v

    Article  PubMed  Google Scholar 

  28. Lanzafame RJ, Stadler I, Coleman J, Haerum B, Oskoui P, Whittaker M, Zhang RY (2004) Temperature-controlled 830-nm low-level laser therapy of experimental pressure ulcers. Photomed Laser Surg 22:483–488

    Article  PubMed  Google Scholar 

  29. Bensadoun RJ, Nair RG (2012) Low-level laser therapy in the prevention and treatment of cancer therapy-induced mucositis: 2012 state of the art based on literature review and meta-analysis. Curr Opin Oncol 24:363–370

    Article  CAS  PubMed  Google Scholar 

  30. Migliorati C, Hewson I, Lalla RV, Antunes HS, Estilo CL, Hodgson B, Lopes NN, Schubert MM, Bowen J, Elad S, Mucositis Study Group of the Multinational Association of Supportive Care in Cancer/International Society of Oral O (2013) Systematic review of laser and other light therapy for the management of oral mucositis in cancer patients. Support Care Cancer 21:333–341

    Article  PubMed  Google Scholar 

  31. Usumez A, Cengiz B, Oztuzcu S, Demir T, Aras MH, Gutknecht N (2013) Effects of laser irradiation at different wavelengths (660, 810, 980, and 1,064 nm) on mucositis in an animal model of wound healing. Lasers Med Sci

  32. Whelan HT, Smits RL Jr, Buchman EV, Whelan NT, Turner SG, Margolis DA, Cevenini V, Stinson H, Ignatius R, Martin T, Cwiklinski J, Philippi AF, Graf WR, Hodgson B, Gould L, Kane M, Chen G, Caviness J (2001) Effect of NASA light-emitting diode irradiation on wound healing. J Clin Laser Med Surg 19:305–314

    Article  CAS  PubMed  Google Scholar 

  33. Dokladny K, Zuhl MN, Mandell M, Bhattacharya D, Schneider S, Deretic V, Moseley PL (2013) Regulatory coordination between two major intracellular homeostatic systems: heat shock response and autophagy. J Biol Chem 288:14959–14972

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. He C, Bassik MC, Moresi V, Sun K, Wei Y, Zou Z, An Z, Loh J, Fisher J, Sun Q, Korsmeyer S, Packer M, May HI, Hill JA, Virgin HW, Gilpin C, Xiao G, Bassel-Duby R, Scherer PE, Levine B (2012) Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature 481:511–515

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Sezer U, Aras MH, Aktan AM, Cengiz B, Ozkul N, Ay S (2012) Cytomorphological changes in buccal mucosa of patients treated with low-level 1,064-nm laser radiation. Lasers Med Sci 27:219–222

    Article  PubMed  Google Scholar 

  36. Morimoto RI (1993) Cells in stress: transcriptional activation of heat shock genes. Science 259:1409–1410

    Article  CAS  PubMed  Google Scholar 

  37. Sarge KD, Murphy SP, Morimoto RI (1993) Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity, and nuclear localization and can occur in the absence of stress. Mol Cell Biol 13:1392–1407

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Gething MJ, Sambrook J (1992) Protein folding in the cell. Nature 355:33–45

    Article  CAS  PubMed  Google Scholar 

  39. Hartl FU (1996) Molecular chaperones in cellular protein folding. Nature 381:571–579

    Article  CAS  PubMed  Google Scholar 

  40. Hendrick JP, Hartl FU (1993) Molecular chaperone functions of heat-shock proteins. Annu Rev Biochem 62:349–384

    Article  CAS  PubMed  Google Scholar 

  41. Moseley PL, Gapen C, Wallen ES, Walter ME, Peterson MW (1994) Thermal stress induces epithelial permeability. Am J Physiol 267:C425–434

    CAS  PubMed  Google Scholar 

  42. Parsell DA, Lindquist S (1993) The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu Rev Genet 27:437–496

    Article  CAS  PubMed  Google Scholar 

  43. Cheng WW, Lin ZQ, Wei BF, Zeng Q, Han B, Wei CX, Fan XJ, Hu CL, Liu LH, Huang JH, Yang X, Xi ZG (2011) Single-walled carbon nanotube induction of rat aortic endothelial cell apoptosis: Reactive oxygen species are involved in the mitochondrial pathway. Int J Biochem Cell Biol 43:564–572

    Article  CAS  PubMed  Google Scholar 

  44. Zeng M, Wei X, Wu Z, Li W, Li B, Fei Y, He Y, Chen J, Wang P, Liu X (2014) Reactive oxygen species contribute to simulated ischemia/reperfusion-induced autophagic cell death in human umbilical vein endothelial cells. Med Sci Monit 20:1017–1023

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Hariharan N, Zhai P, Sadoshima J (2011) Oxidative stress stimulates autophagic flux during ischemia/reperfusion. Antioxid Redox Signal 14:2179–2190

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Ong SB, Gustafsson AB (2012) New roles for mitochondria in cell death in the reperfused myocardium. Cardiovasc Res 94:190–196

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Wang Q, Liang B, Shirwany NA, Zou MH (2011) 2-Deoxy-D-glucose treatment of endothelial cells induces autophagy by reactive oxygen species-mediated activation of the AMP-activated protein kinase. PLoS One 6:e17234

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Zhang L, Wang H, Xu J, Zhu J, Ding K (2014) Inhibition of cathepsin S induces autophagy and apoptosis in human glioblastoma cell lines through ROS-mediated PI3K/AKT/mTOR/p70S6K and JNK signaling pathways. Toxicol Lett 228:248–259

    Article  CAS  PubMed  Google Scholar 

  49. Wang Y, Singh R, Massey AC, Kane SS, Kaushik S, Grant T, Xiang Y, Cuervo AM, Czaja MJ (2008) Loss of macroautophagy promotes or prevents fibroblast apoptosis depending on the death stimulus. J Biol Chem 283:4766–4777

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Abedin MJ, Wang D, McDonnell MA, Lehmann U, Kelekar A (2007) Autophagy delays apoptotic death in breast cancer cells following DNA damage. Cell Death Differ 14:500–510

    Article  CAS  PubMed  Google Scholar 

  51. Ogata M, Hino S, Saito A, Morikawa K, Kondo S, Kanemoto S, Murakami T, Taniguchi M, Tanii I, Yoshinaga K, Shiosaka S, Hammarback JA, Urano F, Imaizumi K (2006) Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol 26:9220–9231

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Krmpot AJ, Janjetovic KD, Misirkic MS, Vucicevic LM, Pantelic DV, Vasiljevic DM, Popadic DM, Jelenkovic BM, Trajkovic VS (2010) Protective effect of autophagy in laser-induced glioma cell death in vitro. Lasers Surg Med 42:338–347

    Article  PubMed  Google Scholar 

  53. Xue LY, Chiu SM, Azizuddin K, Joseph S, Oleinick NL (2007) The death of human cancer cells following photodynamic therapy: apoptosis competence is necessary for Bcl-2 protection but not for induction of autophagy. Photochem Photobiol 83:1016–1023

    Article  CAS  PubMed  Google Scholar 

  54. Wu S, Xing D, Wang F, Chen T, Chen WR (2007) Mechanistic study of apoptosis induced by high-fluence low-power laser irradiation using fluorescence imaging techniques. J Biomed Opt 12:064015

    Article  PubMed  Google Scholar 

  55. Karu TI (1990) Effects of visible radiation on cultured cells. Photochem Photobiol 52:1089–1098

    Article  CAS  PubMed  Google Scholar 

  56. Lubart R, Wollman Y, Friedmann H, Rochkind S, Laulicht I (1992) Effects of visible and near-infrared lasers on cell cultures. J Photochem Photobiol B 12:305–310

    Article  CAS  PubMed  Google Scholar 

  57. Gross AJ, Jelkmann W (1990) Helium-neon laser irradiation inhibits the growth of kidney epithelial cells in culture. Lasers Surg Med 10:40–44

    Article  CAS  PubMed  Google Scholar 

  58. O’Kane S, Shields TD, Gilmore WS, Allen JM (1994) Low intensity laser irradiation inhibits tritiated thymidine incorporation in the hemopoietic cell lines HL-60 and U937. Lasers Surg Med 14:34–39

    Article  PubMed  Google Scholar 

  59. Wang F, Chen TS, Xing D, Wang JJ, Wu YX (2005) Measuring dynamics of caspase-3 activity in living cells using FRET technique during apoptosis induced by high fluence low-power laser irradiation. Lasers Surg Med 36:2–7

    Article  PubMed  Google Scholar 

  60. Dowlatshahi K, Babich D, Bangert JD, Kluiber R (1992) Histologic evaluation of rat mammary tumor necrosis by interstitial Nd:YAG laser hyperthermia. Lasers Surg Med 12:159–164

    Article  CAS  PubMed  Google Scholar 

  61. Muralidharan V, Malcontenti-Wilson C, Christophi C (2002) Interstitial laser hyperthermia for colorectal liver metastases: the effect of thermal sensitization and the use of a cylindrical diffuser tip on tumor necrosis. J Clin Laser Med Surg 20:189–196

    Article  CAS  PubMed  Google Scholar 

  62. Rem AI, Oosterhuis JA, Korver JG, van den Berg TJ (2001) Transscleral laser thermotherapy of hamster Greene melanoma: inducing tumour necrosis without scleral damage. Melanoma Res 11:503–509

    Article  CAS  PubMed  Google Scholar 

  63. Gao X, Chen T, Xing D, Wang F, Pei Y, Wei X (2006) Single cell analysis of PKC activation during proliferation and apoptosis induced by laser irradiation. J Cell Physiol 206:441–448

    Article  CAS  PubMed  Google Scholar 

  64. Zhong Y, Wang QJ, Li X, Yan Y, Backer JM, Chait BT, Heintz N, Yue Z (2009) Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nat Cell Biol 11:468–476

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Lamb CA, Yoshimori T, Tooze SA (2013) The autophagosome: origins unknown, biogenesis complex. Nat Rev Mol Cell Biol 14:759–774

    Article  CAS  PubMed  Google Scholar 

  66. Orsi A, Razi M, Dooley HC, Robinson D, Weston AE, Collinson LM, Tooze SA (2012) Dynamic and transient interactions of Atg9 with autophagosomes, but not membrane integration, are required for autophagy. Mol Biol Cell 23:1860–1873

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Young AR, Chan EY, Hu XW, Kochl R, Crawshaw SG, High S, Hailey DW, Lippincott-Schwartz J, Tooze SA (2006) Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes. J Cell Sci 119:3888–3900

    Article  CAS  PubMed  Google Scholar 

Download references

Ethical statement

The experimental protocol applied in the study was confirmed by the Institutional Animal Care and Ethics Committee of the Gaziantep University, Gaziantep, Turkey (12.2010-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Bostanciklioglu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bostanciklioglu, M., Demiryürek, Ş., Cengiz, B. et al. Assessment of the effect of laser irradiations at different wavelengths (660, 810, 980, and 1064 nm) on autophagy in a rat model of mucositis. Lasers Med Sci 30, 1289–1295 (2015). https://doi.org/10.1007/s10103-015-1727-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-015-1727-4

Keywords

Navigation