Skip to main content

Advertisement

Log in

Dynamic decision-making and coordination of low-carbon closed-loop supply chain considering different power structures and government double subsidy

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

Low-carbon closed-loop supply chain (LC-CLSC) plays an important role in realizing a low-carbon circular economy. In order to facilitate governments to make emission reduction subsidy and recycling subsidy decisions and LC-CLSC members to formulate pricing, emission reduction investment and recycling investment decisions, this paper proposes multiple three-level differential game models of a LC-CLSC involving the manufacturer, retailer and government considering the dynamic characteristics of product goodwill and recycling rate. Under the four scenarios of three different power structures: manufacturer-led, retailer-led and non-led, and centralized decision-making, some critical equilibrium results are first solved and discussed, including government’s optimal emission reduction subsidy and recycling subsidy rates, the manufacturer’s wholesale price and emission reduction investment, the retailer’s retail price and recycling investment, product goodwill and waste product recycling rate, profits of the manufacturer, retailer and government, etc. To further achieve the LC-CLSC coordination, the contracts under three different power structures are designed, and the conditions that the coordination parameters satisfy are given. Through mathematical derivation of equilibrium results and sensitivity analysis with the help of numerical examples, this paper finds that the government subsidy rates are dependent on the power status between manufacturers and retailers, and the weaker party will get higher subsidy rate. The government subsidy mechanism can significantly reduce the gaps between the manufacturer-led and retailer-led cases, such as manufacturer’s emission reduction investment, the retailer’s recycling investment, steady-state retail price, and product goodwill and recycling rate. Under the effect of the government subsidy mechanism, the non-led case is more conducive to the recycling of waste products and the improvement of social welfare than the unilateral domination cases. The findings can help manufacturers and retailers in the LC-CLSC formulate optimal strategies like pricing, emission reduction and recycling, and develop coordination contracts to further improve the overall performance of the supply chain according to their different power structures. More importantly, they can also help governments make optimal emission reduction and recycling subsidy decisions according to member companies’ different power structures so as to improve subsidy efficiency.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aksen D, Aras N, Karaarslan AG (2009) Design and analysis of government subsidized collection systems for incentive-dependent returns. Int J Prod Econ 119:308–327. https://doi.org/10.1016/j.ijpe.2009.02.012

    Article  Google Scholar 

  • Andre FJ, Sokri A, Zaccour G (2011) Public disclosure programs vs. traditional approaches for environmental regulation: green goodwill and the policies of the firm. Eur J Oper Res 212:199–212

    Article  Google Scholar 

  • Atasu A, Souza GVC (2013) How does product recovery affect quality choice? Prod Oper Manag 22:991–1010

    Article  Google Scholar 

  • Bowersox DJ, Cooper MB (1992) Strategic marketing channel management. McGraw-Hill

  • Chen HT, Dong ZH, Li GD (2020) Government reward-penalty mechanism in dual-channel closed-loop supply chain. Sustainability 12:8602

    Article  Google Scholar 

  • Choi TM, Li YJ, Xu L (2013) Channel leadership, performance and coordination in closed loop supply chains. Int J Prod Econ 146:371–380

    Article  Google Scholar 

  • Chuang CH, Wang CX, Zhao Y (2014) Closed-loop supply chain models for a high-tech product under alternative reverse channel and collection cost structures. Int J Prod Econ 156:108–123

    Article  Google Scholar 

  • De Giovanni P, Zaccour G (2014) A two-period game of a closed-loop supply chain. Eur J Oper Res 232:22–40

    Article  Google Scholar 

  • Ferrer G, Swaminathan JM (2010) Managing new and differentiated remanufactured products. Eur J Oper Res 203:370–379

    Article  Google Scholar 

  • Galinato GI, Yoder JK (2010) An integrated tax-subsidy policy for carbon emission reduction. Resour Energy Econom 32:310–326

    Article  Google Scholar 

  • Gao JH, Han HS, Hou LT, Wang HY (2016) Pricing and effort decisions in a closed-loop supply chain under different channel power structures. J Clean Prod 112:2043–2057

    Article  Google Scholar 

  • Gong YD, Chen MZ, Zhuang YL (2019) Decision-making and performance analysis of closed-loop supply chain under different recycling modes and channel power structures. Sustainability 11:1–26

    Google Scholar 

  • Gu XY, Ieromonachou P, Zhou L, Tseng ML (2018) Developing pricing strategy to optimise total profits in an electric vehicle battery closed loop supply chain. J Clean Prod 203:376–385. https://doi.org/10.1016/j.jclepro.2018.08.209

    Article  Google Scholar 

  • Guide Jr VD, Jayaraman V, Linton JD (2003) Building contingency planning for closed-loop supply chains with product recovery. J Oper Manag 21:259–279

    Article  Google Scholar 

  • Guide V, Daniel R Jr, Van W, Luk N (2009) The evolution of closed-loop supply chain research. Oper Res 57:10–18

    Article  Google Scholar 

  • Han X, Wu H, Yang Q, Shang J (2017) Collection channel and production decisions in a closed-loop supply chain with remanufacturing cost disruption. Int J Prod Res 55:1147–1167

    Article  Google Scholar 

  • He P, He Y, Xu H (2019) Channel structure and pricing in a dual-channel closed-loop supply chain with government subsidy. Int J Prod Econ 213:108–123

    Article  Google Scholar 

  • Heese HS, Cattani K, Ferrer G, Gilland W, Roth AV (2005) Competitive advantage through take-back of used products. Eur J Oper Res 164:143–157

    Article  Google Scholar 

  • Hong IH, Yeh JS (2012) Modeling closed-loop supply chains in the electronics industry: a retailer collection application. Transp Res Part E 48:817–829

    Article  Google Scholar 

  • Huang ZS, Nie JJ, Tsai SB (2017) Dynamic collection strategy and coordination of a remanufacturing closed-loop supply chain under uncertainty. Sustainability 9:683

    Article  Google Scholar 

  • Ke H, Wu Y, Huang H, Chen ZY (2018) Optimal pricing decisions for a closed-loop supply chain with retail competition under fuzziness. J Oper Res Soc 69:1468–1482. https://doi.org/10.1080/01605682.2017.1404184

    Article  Google Scholar 

  • Kopalle PK, Winer RS (1996) A dynamic model of reference price and expected quality. Mark Lett 7:41–52

    Article  Google Scholar 

  • Liu Y, Xiao T (2019) Pricing and collection rate decisions and reverse channel choice in a socially responsible supply chain with green consumers. IEEE Trans Eng Manage 99:1–13

    CAS  Google Scholar 

  • Liu WJ, Qin DZ, Shen NN, Zhang J, Jin MZ, Xie NM, Chen J, Chang XY (2020) Optimal pricing for a multi-echelon closed loop supply chain with different power structures and product dual differences. J Clean Prod 257:120281

    Article  Google Scholar 

  • Ma DQ, Hu JS (2020) Research on collaborative management strategies of closed-loop supply chain under the influence of big-data marketing and reference price effect. Sustainability 12:1685

    Article  Google Scholar 

  • Meng XG, Yao Z, Nie JJ, Zhao YX, Li ZL (2018) Low-carbon product selection with carbon tax and competition: effects of the power structure. Int J Prod Econ 200:224–230

    Article  Google Scholar 

  • Mukhopadhyay SK, Ma H (2009) Joint procurement and production decisions in remanufacturing under quality and demand uncertainty. Int J Prod Econ 120:5–17

    Article  Google Scholar 

  • Mundaca G (2017) How much can CO2 emissions be reduced if fossil fuel subsidies are removed? Energy Econ 64:91–104

    Article  Google Scholar 

  • Nair A, Narasimhan R (2006) Dynamics of competing with quality- and advertising-based goodwill. Eur J Oper Res 175:462–474

    Article  Google Scholar 

  • Pu XJ, Song ZP, Han GH (2018) Competition among supply chains and governmental policy: considering consumers’ low-carbon preference. Int J Environ Res Public Health 15:1985

    Article  Google Scholar 

  • Qiong Xia, Minyue J, Huaqing Wu, Chenchen Y (2018) A DEA-based decision framework to determine the subsidy rate of emission reduction for local government. J Clean Prod 202:846–852

    Article  Google Scholar 

  • Savaskan RC, Van Wassenhove LN (2006) Reverse channel design: the case of competing retailers. Manag Sci 52:1–14

    Article  Google Scholar 

  • Savaskan RC, Bhattacharya S, Van Wassenhove L (2004) Closed-loop supply chain models with product remanufacturing. Manag Sci 50:239–252

    Article  Google Scholar 

  • Su JF, Li C, Zeng QJ, Yang JQ, Zhang J (2019) A green closed-loop supply chain coordination mechanism based on third-party recycling. Sustainability 11:5335

    Article  Google Scholar 

  • Wan NN (2018) The impacts of low carbon subsidy, collection mode, and power structure on a closed-loop supply chain. J Renew Sustain Energy 10:065904

    Article  Google Scholar 

  • Wan NN, Hong DJ (2019) The impacts of subsidy policies and transfer pricing policies on the closed-loop supply chain with dual collection channels. J Clean Prod 224:881–891. https://doi.org/10.1016/j.jclepro.2019.03.274

    Article  Google Scholar 

  • Wang WB, Zhang Y, Zhang K, Bai T, Shang J (2015) Reward-penalty mechanism for closed-loop supply chains under responsibility-sharing and different power structures. Int J Prod Econ 170:178–190

    Article  Google Scholar 

  • Wang J, Cheng XX, Wang XY, Yang HT, Zhang SH (2019a) Myopic versus farsighted behaviors in a low-carbon supply chain with reference emission effects. Complexity 2019:3123572

    Google Scholar 

  • Wang Z, Huo JZ, Duan YR (2019b) Impact of government subsidies on pricing strategies in reverse supply chains of waste electrical and electronic equipment. Waste Manag 95:440–449. https://doi.org/10.1016/j.wasman.2019.06.006

    Article  Google Scholar 

  • Wang Y, Fan R, Shen L, Miller W (2020) Recycling decisions of low-carbon e-commerce closed-loop supply chain under government subsidy mechanism and altruistic preference. J Clean Prod 259:120883

    Article  Google Scholar 

  • Wei J, Zhao J (2015) Pricing and remanufacturing decisions in two competing supply chains. Int J Prod Res 53:258–278. https://doi.org/10.1080/00207543.2014.951088

    Article  Google Scholar 

  • Xia XQ, Ruan JH, Juan ZR, Shi Y, Wang XP, Chan FTS (2018) Upstream-downstream joint carbon reduction strategies based on low-carbon promotion. Int J Environ Res Public Health 15:1351

    Article  Google Scholar 

  • Xia LJ, Bai YW, Ghose S, Qin JJ (2020) Differential game analysis of carbon emissions reduction and promotion in a sustainable supply chain considering social preferences. Ann Oper Res. https://doi.org/10.1007/s10479-020-03838-8

    Article  Google Scholar 

  • Xiang ZH, Xu ML (2019) Dynamic cooperation strategies of the closed-loop supply chain involving the internet service platform. J Clean Prod 220:1180–1193

    Article  Google Scholar 

  • Xiang ZH, Xu ML (2020) Dynamic game strategies of a two-stage remanufacturing closed-loop supply chain considering Big Data marketing, technological innovation and overconfidence. Comput Ind Eng 145:106538

    Article  Google Scholar 

  • Xie JP, Liang L, Liu LH, Ieromonachou P (2017) Coordination contracts of dual-channel with cooperation advertising in closed-loop supply chains. Int J Prod Econ 183:528–538. https://doi.org/10.1016/j.ijpe.2016.07.026

    Article  Google Scholar 

  • Xu L, Wang CX, Miao Z, Chen JH (2019) Governmental subsidy policies and supply chain decisions with carbon emission limit and consumer’s environmental awareness. Rairo-Oper Res 53:1675–1689

    Article  Google Scholar 

  • Zhang ZY, Yu LY (2021) Dynamic optimization and coordination of cooperative emission reduction in a dual-channel supply chain considering reference low-carbon effect and low-carbon goodwill. Int J Environ Res Public Health 18:539

    Article  CAS  Google Scholar 

  • Zhang ZC, Zhang Q, Liu Z, Zheng XX (2018) Static and dynamic pricing strategies in a closed-loop supply chain with reference quality effects. Sustainability 10:157

    Article  Google Scholar 

  • Zhang SY, Wang CX, Yu C, Ren YJ (2019) Governmental cap regulation and manufacturer’s low carbon strategy in a supply chain with different power structures. Comput Ind Eng 134:27–36

    Article  Google Scholar 

  • Zhang ZY, Fu DX, Zhou Q (2020) Optimal decisions of a green supply chain under the joint action of fairness preference and subsidy to the manufacturer. Discrete Dyn Nat Soc 2020:1–18

    Article  CAS  Google Scholar 

  • Zhao JH, Sun N (2020) Government subsidies-based profits distribution pattern analysis in closed-loop supply chain using game theory. Neural Comput Appl 32:1715–1724. https://doi.org/10.1007/s00521-019-04245-2

    Article  Google Scholar 

  • Zhao J, Wei J, Li MY (2017) Collecting channel choice and optimal decisions on pricing and collecting in a remanufacturing supply chain. J Clean Prod 167:530–544. https://doi.org/10.1016/j.jclepro.2017.07.254

    Article  Google Scholar 

  • Zheng BR, Hong XP (2020) Effects of take-back legislation on pricing and coordination in a closed-loop supply chain. J Ind Manag Optim. https://doi.org/10.3934/jimo.2021035

    Article  Google Scholar 

  • Zheng BR, Yang C, Yang J, Zhang M (2017) Dual-channel closed loop supply chains: forward channel competition, power structures and coordination. Int J Prod Res 55:3510–3527

    Article  Google Scholar 

  • Zu YF, Chen LH, Fan Y (2018) Research on low-carbon strategies in supply chain with environmental regulations based on differential game. J Clean Prod 177:527–546

    Article  Google Scholar 

Download references

Acknowledgements

All authors thank the reviewers and editors for their work. This study was funded by National Natural Science Foundation of China (grant number 12071280; 11671250).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liying Yu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Data availability

All data generated or analyzed during this study are included in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 4.1

Theorem 1

(1) The optimal decisions of the manufacturer and retailer are as follows:

$$\left\{ \begin{gathered} w^{m} = \frac{{\left[ {\alpha + \left( {\mu + 2\beta b - \beta c - \beta \Delta } \right)\varepsilon } \right]\sqrt {G^{m} \left( t \right)} }}{2\beta } \hfill \\ E^{m} = \frac{{\phi \left[ {\alpha + \left( {\mu - \beta c + \beta \Delta } \right)\varepsilon } \right]^{2} }}{{8\beta \left( {\rho + \sigma } \right)\left( {1 - \theta_{m}^{m} } \right)\eta_{m} }} \hfill \\ \end{gathered} \right.,\;\left\{ \begin{gathered} p^{m} = \frac{{\left[ {3\alpha + \left( {3\mu + \beta c - \beta \Delta } \right)\varepsilon } \right]\sqrt {G^{m} \left( t \right)} }}{4\beta } \hfill \\ A^{m} = \frac{{\lambda \left[ {\alpha + \left( {\mu - \beta c + \beta \Delta } \right)\varepsilon } \right]^{2} }}{{16\beta \left( {\rho + \sigma } \right)\left( {1 - \theta_{r}^{m} } \right)\eta_{r} }} \hfill \\ \end{gathered} \right.$$

(2) The optimal emission reduction and recycling subsidy rates set by the government are as follows:

$$\theta_{m}^{m} = \frac{3}{7},\;\theta_{r}^{m} = \frac{5}{7}$$

(3) The optimal evolution trajectories of product goodwill and waste product recycling rate are, respectively, as follows:

$$G^{m} \left( t \right) = \left( {G_{0} - G_{\infty }^{m} } \right)e^{ - \sigma t} + G_{\infty }^{m}$$
$$\tau^{m} \left( t \right) = \varepsilon \sqrt {G^{m} \left( t \right)} = \varepsilon \sqrt {\left( {G_{0} - G_{\infty }^{m} } \right)e^{ - \sigma t} + G_{\infty }^{m} }$$

(4) The optimal profits of the manufacturer and retailer are as follows:

$$\pi_{m}^{m} \left( t \right) = \pi_{m\infty }^{m} + a_{1} \left( {G_{0} - G_{\infty }^{m} } \right)e^{ - \sigma t} ,\;\pi_{r}^{m} \left( t \right) = \pi_{r\infty }^{m} + a_{2} \left( {G_{0} - G_{\infty }^{m} } \right)e^{ - \sigma t}$$

(5) The government’s optimal income is as follows:

$$\pi_{g}^{m} \left( t \right) = \pi_{g\infty }^{m} + a_{3} \left( {G_{0} - G_{\infty }^{m} } \right)e^{ - \sigma t}$$

Theorem 2

(1) when \(t \to \infty\),the steady-state product goodwill and waste product recycling rate are, respectively, as follows:

$$G_{\infty }^{m} = \frac{{7\left[ {\alpha + \left( {\mu - \beta c + \beta \Delta } \right)\varepsilon } \right]^{2} }}{{32\beta \sigma \left( {\rho + \sigma } \right)}}\left( {\frac{{\phi^{2} }}{{\eta_{m} }} + \frac{{\lambda^{2} }}{{\eta_{r} }}} \right),\;\tau_{\infty }^{m} = \varepsilon \sqrt {G_{\infty }^{m} } = \varepsilon \left[ {\alpha + \left( {\mu - \beta c + \beta \Delta } \right)\varepsilon } \right]\sqrt {\frac{7}{{32\beta \sigma \left( {\rho + \sigma } \right)}}\left( {\frac{{\phi^{2} }}{{\eta_{m} }} + \frac{{\lambda^{2} }}{{\eta_{r} }}} \right)}$$

(2) when \(t \to \infty\), the steady-state product wholesale price and retail price are, respectively, as follows:

$$\begin{gathered} w_{\infty }^{m} = \frac{{\left[ {\alpha + \left( {\mu + 2\beta b - \beta c - \beta \Delta } \right)\varepsilon } \right]\left[ {\alpha + \left( {\mu - \beta c + \beta \Delta } \right)\varepsilon } \right]}}{2\beta }\sqrt {\frac{7}{{32\beta \sigma \left( {\rho + \sigma } \right)}}\left( {\frac{{\phi^{2} }}{{\eta_{m} }} + \frac{{\lambda^{2} }}{{\eta_{r} }}} \right)} ,\; \hfill \\ p_{\infty }^{m} = \frac{{\left[ {3\alpha + \left( {3\mu + \beta c - \beta \Delta } \right)\varepsilon } \right]\left[ {\alpha + \left( {\mu - \beta c + \beta \Delta } \right)\varepsilon } \right]}}{4\beta }\sqrt {\frac{7}{{32\beta \sigma \left( {\rho + \sigma } \right)}}\left( {\frac{{\phi^{2} }}{{\eta_{m} }} + \frac{{\lambda^{2} }}{{\eta_{r} }}} \right)} \hfill \\ \end{gathered}$$

(3) when \(t \to \infty\), the steady-state profits of the manufacturer and retailer are, respectively, as follows:

$$\pi_{m\infty }^{m} = a_{1} G_{\infty }^{m} + d_{1} ,\;\pi_{r\infty }^{m} = a_{2} G_{\infty }^{m} + d_{2}$$

where \(a_{1} = \frac{{\left[ {\alpha + \left( {\mu - \beta c + \beta \Delta } \right)\varepsilon } \right]^{2} }}{{8\beta \left( {\rho + \sigma } \right)}}\),\(a_{2} = \frac{{\left[ {\alpha + \left( {\mu - \beta c + \beta \Delta } \right)\varepsilon } \right]^{2} }}{{16\beta \left( {\rho + \sigma } \right)}}\),\(d_{1} = \frac{1}{\rho }\left[ {\frac{{7\phi^{2} \left( {a_{1} } \right)^{2} }}{{8\eta_{m} }} + \frac{{7\lambda^{2} a_{1} a_{2} }}{{2\eta_{r} }}} \right]\),

$$d_{2} = \frac{1}{\rho }\left[ {\frac{{7\lambda^{2} \left( {a_{2} } \right)^{2} }}{{4\eta_{r} }} + \frac{{7\phi^{2} a_{1} a_{2} }}{{4\eta_{m} }}} \right]$$

(4) when \(t \to \infty\), the steady-state income of the government is as follows:

$$\pi_{g\infty }^{m} = a_{3} G_{\infty }^{m} + d_{3}$$

where \(a_{3} = \frac{{7\left[ {\alpha + \left( {\mu - \beta c + \beta \Delta } \right)\varepsilon } \right]^{2} }}{{32\beta \left( {\rho + \sigma } \right)}}\),\(d_{3} = \frac{{\left( {a_{3} } \right)^{2} }}{2\rho }\left( {\frac{{\phi^{2} }}{{\eta_{m} }} + \frac{{\lambda^{2} }}{{\eta_{r} }}} \right)\) The proof of Theorem 1 is similar to the proof of Theorem 3 and is omitted.

Appendix 4.2

Theorem 3

(1) The optimal decisions of the manufacturer and retailer are as follows:

$$\left\{ \begin{gathered} w^{r} = \frac{{\left[ {\alpha + \left( {\mu + 4\beta b - \beta c - 3\beta \Delta } \right)\varepsilon } \right]\sqrt {G^{r} \left( t \right)} }}{4\beta } \hfill \\ E^{r} = \frac{{\phi \left[ {\alpha + \left( {\mu - \beta c + \beta \Delta } \right)\varepsilon } \right]^{2} }}{{16\beta \left( {\rho + \sigma } \right)\left( {1 - \theta_{m}^{r} } \right)\eta_{m} }} \hfill \\ \end{gathered} \right.,\;\left\{ \begin{gathered} p^{r} = \frac{{\left[ {3\alpha + \left( {3\mu + \beta c - \beta \Delta } \right)\varepsilon } \right]\sqrt {G^{r} \left( t \right)} }}{4\beta } \hfill \\ A^{r} = \frac{{\lambda \left[ {\alpha + \left( {\mu - \beta c + \beta \Delta } \right)\varepsilon } \right]^{2} }}{{8\beta \left( {\rho + \sigma } \right)\left( {1 - \theta_{r}^{r} } \right)\eta_{r} }} \hfill \\ \end{gathered} \right.$$

(2) The optimal emission reduction and recycling subsidy rates set by the government are as follows:

$$\theta_{m}^{r} = \frac{5}{7},\;\theta_{r}^{r} = \frac{3}{7}$$

(3) The optimal evolution trajectories of product goodwill and waste product recycling rate are, respectively, as follows:

$$G^{r} \left( t \right) = \left( {G_{0} - G_{\infty }^{r} } \right)e^{ - \sigma t} + G_{\infty }^{r}$$
$$\tau^{r} \left( t \right) = \varepsilon \sqrt {G^{r} \left( t \right)} = \varepsilon \sqrt {\left( {G_{0} - G_{\infty }^{r} } \right)e^{ - \sigma t} + G_{\infty }^{r} }$$

(4) The optimal profits of the manufacturer and retailer are as follows:

$$\pi_{m}^{r} \left( t \right) = \pi_{m\infty }^{r} + a_{4} \left( {G_{0} - G_{\infty }^{r} } \right)e^{ - \sigma t} ,\;\pi_{r}^{r} \left( t \right) = \pi_{r\infty }^{r} + a_{5} \left( {G_{0} - G_{\infty }^{r} } \right)e^{ - \sigma t}$$

(5) The government’s optimal income is as follows:

$$\pi_{g}^{r} \left( t \right) = \pi_{g\infty }^{r} + a_{6} \left( {G_{0} - G_{\infty }^{r} } \right)e^{ - \sigma t}$$

Theorem 4

(1) when \(t \to \infty\), the steady-state product goodwill and waste product recycling rate are, respectively, as follows:

$$\begin{gathered} G_{\infty }^{r} = \frac{{7\left[ {\alpha + \left( {\mu - \beta c + \beta \Delta } \right)\varepsilon } \right]^{2} }}{{32\beta \sigma \left( {\rho + \sigma } \right)}}\left( {\frac{{\phi^{2} }}{{\eta_{m} }} + \frac{{\lambda^{2} }}{{\eta_{r} }}} \right), \hfill \\ \tau_{\infty }^{r} = \varepsilon \sqrt {G_{\infty }^{r} } = \varepsilon \left[ {\alpha + \left( {\mu - \beta c + \beta \Delta } \right)\varepsilon } \right]\sqrt {\frac{7}{{32\beta \sigma \left( {\rho + \sigma } \right)}}\left( {\frac{{\phi^{2} }}{{\eta_{m} }} + \frac{{\lambda^{2} }}{{\eta_{r} }}} \right)} \hfill \\ \end{gathered}$$

(2) when \(t \to \infty\), the steady-state product wholesale price and retail price are, respectively, as follows:

$$\begin{gathered} w_{\infty }^{r} = \frac{{\left[ {\alpha + \left( {\mu + 4\beta b - \beta c - 3\beta \Delta } \right)\varepsilon } \right]\left[ {\alpha + \left( {\mu - \beta c + \beta \Delta } \right)\varepsilon } \right]}}{4\beta }\sqrt {\frac{7}{{32\beta \sigma \left( {\rho + \sigma } \right)}}\left( {\frac{{\phi^{2} }}{{\eta_{m} }} + \frac{{\lambda^{2} }}{{\eta_{r} }}} \right)} , \hfill \\ p_{\infty }^{r} = \frac{{\left[ {3\alpha + \left( {3\mu + \beta c - \beta \Delta } \right)\varepsilon } \right]\left[ {\alpha + \left( {\mu - \beta c + \beta \Delta } \right)\varepsilon } \right]}}{4\beta }\sqrt {\frac{7}{{32\beta \sigma \left( {\rho + \sigma } \right)}}\left( {\frac{{\phi^{2} }}{{\eta_{m} }} + \frac{{\lambda^{2} }}{{\eta_{r} }}} \right)} \hfill \\ \end{gathered}$$

(3) when \(t \to \infty\), the steady-state profits of the manufacturer and retailer are, respectively, as follows:

$$\pi_{m\infty }^{r} = a_{4} G_{\infty }^{r} + d_{4} ,\;\pi_{r\infty }^{r} = a_{5} G_{\infty }^{r} + d_{5}$$

where

$$\begin{gathered} a_{4} = \frac{{\left[ {\alpha + \left( {\mu - \beta c + \beta \Delta } \right)\varepsilon } \right]^{2} }}{{16\beta \left( {\rho + \sigma } \right)}},\;a_{5} = \frac{{\left[ {\alpha + \left( {\mu - \beta c + \beta \Delta } \right)\varepsilon } \right]^{2} }}{{8\beta \left( {\rho + \sigma } \right)}} \hfill \\ d_{4} = \frac{1}{\rho }\left[ {\frac{{7\phi^{2} \left( {a_{4} } \right)^{2} }}{{4\eta_{m} }} + \frac{{7\lambda^{2} a_{4} a_{5} }}{{4\eta_{r} }}} \right],\;d_{5} = \frac{1}{\rho }\left[ {\frac{{7\lambda^{2} \left( {a_{5} } \right)^{2} }}{{8\eta_{r} }} + \frac{{7\phi^{2} a_{4} a_{5} }}{{2\eta_{m} }}} \right] \hfill \\ \end{gathered}$$

(4) when \(t \to \infty\), the steady-state income of the government is as follows:

$$\pi_{g\infty }^{r} = a_{6} G_{\infty }^{r} + d_{6}$$

where

$$a_{6} = \frac{{7\left[ {\alpha + \left( {\mu - \beta c + \beta \Delta } \right)\varepsilon } \right]^{2} }}{{32\beta \left( {\rho + \sigma } \right)}},\;d_{6} = \frac{{\left( {a_{6} } \right)^{2} }}{2\rho }\left( {\frac{{\phi^{2} }}{{\eta_{m} }} + \frac{{\lambda^{2} }}{{\eta_{r} }}} \right)$$

Proof of Theorem 3

According to Eq. (5), we first let \(\pi_{m}^{r} \left( G \right) = e^{ - \rho t} V_{m}^{r} \left( G \right)\), and then based on the optimal control theory,\(V_{m}^{r} \left( G \right)\) for any \(G \ge 0\), the following HJB equation is satisfied:

$$\rho V_{m}^{r} \left( G \right) = \mathop {\max }\limits_{w,E} \left\{ {\left[ {w + \left( {\Delta - b} \right)\varepsilon \sqrt G } \right]\left[ {\left( {\alpha + \mu \varepsilon } \right)\sqrt G - \beta p} \right] - \frac{{\left( {1 - \theta_{m}^{r} } \right)\eta_{m} E^{2} }}{2} + \frac{{\partial V_{m}^{r} }}{\partial G}\left( {\phi E + \lambda A - \sigma G} \right)} \right\}$$

Let \(p = w + m\), by solving the first-order partial derivative of \(w\) and \(E\), and the optimal first-order condition, we can get:

$$w^{r} = \frac{{\left[ {\alpha + \left( {\mu + \beta b - \beta \Delta } \right)\varepsilon } \right]\sqrt G - \beta m}}{2\beta },\;E^{r} = \frac{{\phi \frac{{\partial V_{m}^{r} }}{\partial G}}}{{\left( {1 - \theta_{m}^{r} } \right)\eta_{m} }}$$

Then according to Eq. (6), let \(\pi_{r}^{r} \left( G \right) = e^{ - \rho t} V_{r}^{r} \left( G \right)\), and then based on the optimal control theory,\(V_{r}^{r} \left( G \right)\) for any \(G \ge 0\), the following HJB equation is satisfied:

$$\begin{gathered} \rho V_{r}^{r} \left( G \right) = \mathop {\max }\limits_{p,A} \left\{ {\left[ {\left( {p - w} \right) + \left( {b - c} \right)\varepsilon \sqrt G } \right]\left[ {\left( {\alpha + \mu \varepsilon } \right)\sqrt G - \beta p} \right] - \frac{{\left( {1 - \theta_{r}^{r} } \right)\eta_{r} A^{2} }}{2} + \frac{{\partial V_{r}^{r} }}{\partial G}\left( {\phi E + \lambda A - \sigma G} \right)} \right\} \hfill \\ = \mathop {\max }\limits_{p,A} \left\{ {\left[ {m + \left( {b - c} \right)\varepsilon \sqrt G } \right]\left[ {\frac{{\left[ {\alpha + \left( {\mu - \beta b + \beta \Delta } \right)\varepsilon } \right]\sqrt G - \beta m}}{2}} \right] - \frac{{\left( {1 - \theta_{r}^{r} } \right)\eta_{r} A^{2} }}{2} + \frac{{\partial V_{r}^{r} }}{\partial G}\left( {\phi \frac{{\phi \frac{{\partial V_{m}^{r} }}{\partial G}}}{{\left( {1 - \theta_{m}^{r} } \right)\eta_{m} }} + \lambda A - \sigma G} \right)} \right\} \hfill \\ \end{gathered}$$

By solving the first-order partial derivative of \(m\) and \(A\), and the optimal first-order condition, we can get:

$$m = \frac{{\left[ {\alpha + \left( {\mu - 2\beta b + \beta c + \beta \Delta } \right)\varepsilon } \right]\sqrt G }}{2\beta },\;A^{r} = \frac{{\lambda \frac{{\partial V_{r}^{r} }}{\partial G}}}{{\left( {1 - \theta_{r}^{r} } \right)\eta_{r} }}$$

Then, we can get the optimal wholesale price and retail price are as follows:

$$w^{r} = \frac{{\left[ {\alpha + \left( {\mu + 4\beta b - \beta c - 3\beta \Delta } \right)\varepsilon } \right]\sqrt G }}{4\beta },\;p^{r} = \frac{{\left[ {3\alpha + \left( {3\mu + \beta c - \beta \Delta } \right)\varepsilon } \right]\sqrt G }}{4\beta }$$

Then, substituting the above equilibrium solutions into the HJB equations of the manufacturer’s and retailer’s objective functions, and further sorting it out, we can get:

$$\begin{gathered} \rho V_{r}^{r} \left( G \right) = \left\{ {\frac{{\left[ {\alpha + \left( {\mu - \beta c + \beta \Delta } \right)\varepsilon } \right]^{2} }}{8\beta } - \sigma \frac{{\partial V_{r}^{r} }}{\partial G}} \right\}G + \frac{{\lambda^{2} \left( {\frac{{\partial V_{r}^{r} }}{\partial G}} \right)^{2} }}{{2\left( {1 - \theta_{r}^{r} } \right)\eta_{r} }} + \frac{{\phi^{2} \frac{{\partial V_{r}^{r} }}{\partial G}\frac{{\partial V_{m}^{r} }}{\partial G}}}{{\left( {1 - \theta_{m}^{r} } \right)\eta_{m} }} \hfill \\ \rho V_{m}^{r} \left( G \right) = \left\{ {\frac{{\left[ {\alpha + \left( {\mu - \beta c + \beta \Delta } \right)\varepsilon } \right]^{2} }}{16\beta } - \sigma \frac{{\partial V_{m}^{r} }}{\partial G}} \right\}G + \frac{{\phi^{2} \left( {\frac{{\partial V_{m}^{r} }}{\partial G}} \right)^{2} }}{{2\left( {1 - \theta_{m}^{r} } \right)\eta_{m} }} + \frac{{\lambda^{2} \frac{{\partial V_{m}^{r} }}{\partial G}\frac{{\partial V_{r}^{r} }}{\partial G}}}{{\left( {1 - \theta_{r}^{r} } \right)\eta_{r} }} \hfill \\ \end{gathered}$$

According to the structural characteristics of the above expression, we assume that \(V_{m}^{r} \left( G \right)\) and \(V_{r}^{r} \left( G \right)\) satisfy the following expression, respectively:

$$\begin{gathered} V_{m}^{r} \left( G \right) = a_{4} G + d_{4} \hfill \\ V_{r}^{r} \left( G \right) = a_{5} G + d_{5} \hfill \\ \end{gathered}$$

where \(a_{4}\),\(d_{4}\),\(a_{5}\) and \(d_{5}\) are all constants.

Then, we can get:

$$\left\{ \begin{gathered} \rho a_{4} = \frac{{\left[ {\alpha + \left( {\mu - \beta c + \beta \Delta } \right)\varepsilon } \right]^{2} }}{16\beta } - \sigma a_{4} \hfill \\ \rho d_{4} = \frac{{\phi^{2} \left( {a_{4} } \right)^{2} }}{{2\left( {1 - \theta_{m}^{r} } \right)\eta_{m} }} + \frac{{\lambda^{2} a_{4} a_{5} }}{{\left( {1 - \theta_{r}^{r} } \right)\eta_{r} }} \hfill \\ \rho a_{5} = \frac{{\left[ {\alpha + \left( {\mu - \beta c + \beta \Delta } \right)\varepsilon } \right]^{2} }}{8\beta } - \sigma a_{5} \hfill \\ \rho d_{5} = \frac{{\lambda^{2} \left( {a_{5} } \right)^{2} }}{{2\left( {1 - \theta_{r}^{r} } \right)\eta_{r} }} + \frac{{\phi^{2} a_{4} a_{5} }}{{\left( {1 - \theta_{m}^{r} } \right)\eta_{m} }} \hfill \\ \end{gathered} \right.$$

By solving the equations, we can obtain:

$$\begin{gathered} a_{4} = \frac{{\left[ {\alpha + \left( {\mu - \beta c + \beta \Delta } \right)\varepsilon } \right]^{2} }}{{16\beta \left( {\rho + \sigma } \right)}},\;a_{5} = \frac{{\left[ {\alpha + \left( {\mu - \beta c + \beta \Delta } \right)\varepsilon } \right]^{2} }}{{8\beta \left( {\rho + \sigma } \right)}} \hfill \\ d_{4} = \frac{1}{\rho }\left[ {\frac{{\phi^{2} \left( {a_{4} } \right)^{2} }}{{2\left( {1 - \theta_{m}^{r} } \right)\eta_{m} }} + \frac{{\lambda^{2} a_{4} a_{5} }}{{\left( {1 - \theta_{r}^{r} } \right)\eta_{r} }}} \right],\;d_{5} = \frac{1}{\rho }\left[ {\frac{{\lambda^{2} \left( {a_{5} } \right)^{2} }}{{2\left( {1 - \theta_{r}^{r} } \right)\eta_{r} }} + \frac{{\phi^{2} a_{4} a_{5} }}{{\left( {1 - \theta_{m}^{r} } \right)\eta_{m} }}} \right] \hfill \\ \end{gathered}$$

Then substituting the above results into the expressions of the manufacturer’s optimal emission reduction investment strategy and the retailer’s optimal recycling investment strategy, the manufacturer’s optimal emission reduction investment decision and the retailer’s optimal recycling investment decision can be obtained as follows:

$$\left\{ \begin{gathered} E^{r} = \frac{{\phi \left[ {\alpha + \left( {\mu - \beta c + \beta \Delta } \right)\varepsilon } \right]^{2} }}{{16\beta \left( {\rho + \sigma } \right)\left( {1 - \theta_{m}^{r} } \right)\eta_{m} }} \hfill \\ A^{r} = \frac{{\lambda \left[ {\alpha + \left( {\mu - \beta c + \beta \Delta } \right)\varepsilon } \right]^{2} }}{{8\beta \left( {\rho + \sigma } \right)\left( {1 - \theta_{r}^{r} } \right)\eta_{r} }} \hfill \\ \end{gathered} \right.$$

Finally, we will solve the government’s optimal control problem. According to Eq. (8), we first let \(\pi_{g}^{r} \left( G \right) = e^{ - \rho t} V_{g}^{r} \left( G \right)\), and then based on the optimal control theory,\(V_{g}^{r} \left( G \right)\) for any \(G \ge 0\), the following HJB equation is satisfied:

$$\rho V_{g}^{r} \left( G \right) = \mathop {\max }\limits_{{\theta_{m}^{r} ,\theta_{r}^{r} }} \left\{ {\left[ {p + \left( {\Delta - c} \right)\varepsilon \sqrt G } \right]\left[ {\left( {\alpha + \mu \varepsilon } \right)\sqrt G - \beta p} \right] - \frac{{\eta_{m} E^{2} }}{2} - \frac{{\eta_{r} A^{2} }}{2} + \frac{{\partial V_{g}^{r} }}{\partial G}\left( {\phi E + \lambda A - \sigma G} \right)} \right\}$$

By solving the first-order partial derivative of \(\theta_{m}^{r}\) and \(\theta_{r}^{r}\), and the optimal first-order condition, we can get:

$$\theta_{m}^{r} = 1 - \frac{{\left[ {\alpha + \left( {\mu - \beta c + \beta \Delta } \right)\varepsilon } \right]^{2} }}{{16\beta \left( {\rho + \sigma } \right)\frac{{\partial V_{g}^{r} }}{\partial G}}},\;\theta_{r}^{r} = 1 - \frac{{\left[ {\alpha + \left( {\mu - \beta c + \beta \Delta } \right)\varepsilon } \right]^{2} }}{{8\beta \left( {\rho + \sigma } \right)\frac{{\partial V_{g}^{r} }}{\partial G}}}$$

Substituting the above-mentioned government’s optimal feedback strategies back to the HJB equation, and further sorting it out, we can get:

$$\rho V_{g}^{r} \left( G \right) = \left\{ {\frac{{3\left[ {\alpha + \left( {\mu - \beta c + \beta \Delta } \right)\varepsilon } \right]^{2} }}{16\beta } - \sigma \frac{{\partial V_{g}^{r} }}{\partial G}} \right\}G + \frac{{\phi^{2} \left( {\frac{{\partial V_{g}^{r} }}{\partial G}} \right)^{2} }}{{2\eta_{m} }} + \frac{{\lambda^{2} \left( {\frac{{\partial V_{g}^{r} }}{\partial G}} \right)^{2} }}{{2\eta_{r} }}$$

According to the structural characteristics of the above expression, we assume that \(V_{g}^{r} \left( G \right)\) satisfies the following expression:

$$V_{g}^{r} \left( G \right) = a_{6} G + d_{6}$$

where \(a_{6}\) and \(d_{6}\) are all constants.

Then, we can get:

$$\left\{ \begin{gathered} \rho a_{6} = \frac{{3\left[ {\alpha + \left( {\mu - \beta c + \beta \Delta } \right)\varepsilon } \right]^{2} }}{16\beta } - \sigma a_{6} \hfill \\ \rho d_{6} = \frac{{\phi^{2} \left( {\frac{{\partial V_{g}^{r} }}{\partial G}} \right)^{2} }}{{2\eta_{m} }} + \frac{{\lambda^{2} \left( {\frac{{\partial V_{g}^{r} }}{\partial G}} \right)^{2} }}{{2\eta_{r} }} \hfill \\ \end{gathered} \right.$$

By solving the equations, we can obtain:

$$a_{6} = \frac{{3\left[ {\alpha + \left( {\mu - \beta c + \beta \Delta } \right)\varepsilon } \right]^{2} }}{{16\beta \left( {\rho + \sigma } \right)}},\;d_{6} = \frac{1}{\rho }\left[ {\frac{{\phi^{2} \left( {a_{6} } \right)^{2} }}{{2\eta_{m} }} + \frac{{\lambda^{2} \left( {a_{6} } \right)^{2} }}{{2\eta_{r} }}} \right]$$

Then substituting the above results into the expression of the government's optimal emission reduction and recovery subsidy strategy, we can get: \(\theta_{r}^{r} = \frac{3}{7}\),\(\theta_{m}^{r} = \frac{5}{7}\).

Theorem 3 is proved.

Appendix 4.3

Theorem 5

(1) The optimal decisions of the manufacturer and retailer are as follows:

$$\left\{ \begin{gathered} w^{n} = \frac{{\left[ {\alpha + \left( {\mu + 3\beta b - \beta c - 2\beta \Delta } \right)\varepsilon } \right]\sqrt {G^{n} \left( t \right)} }}{3\beta } \hfill \\ E^{n} = \frac{{\phi \left[ {\alpha + \left( {\mu - \beta c + \beta \Delta } \right)\varepsilon } \right]^{2} }}{{9\beta \left( {\rho + \sigma } \right)\left( {1 - \theta_{m}^{n} } \right)\eta_{m} }} \hfill \\ \end{gathered} \right.,\;\left\{ \begin{gathered} p^{n} = \frac{{\left[ {2\alpha + \left( {2\mu + \beta c - \beta \Delta } \right)\varepsilon } \right]\sqrt {G^{n} \left( t \right)} }}{3\beta } \hfill \\ A^{n} = \frac{{\lambda \left[ {\alpha + \left( {\mu - \beta c + \beta \Delta } \right)\varepsilon } \right]^{2} }}{{9\beta \left( {\rho + \sigma } \right)\left( {1 - \theta_{r}^{n} } \right)\eta_{r} }} \hfill \\ \end{gathered} \right.$$

(2) The optimal emission reduction and recycling subsidy rates set by the government are as follows:

$$\theta_{m}^{n} = \frac{3}{5},\;\theta_{r}^{n} = \frac{3}{5}$$

(3) The optimal evolution trajectories of product goodwill and waste product recycling rate are, respectively, as follows:

$$G^{n} \left( t \right) = \left( {G_{0} - G_{\infty }^{n} } \right)e^{ - \sigma t} + G_{\infty }^{n}$$
$$\tau^{n} \left( t \right) = \varepsilon \sqrt {G^{n} \left( t \right)} = \varepsilon \sqrt {\left( {G_{0} - G_{\infty }^{n} } \right)e^{ - \sigma t} + G_{\infty }^{n} }$$

(4) The optimal profits of the manufacturer and retailer are as follows:

$$\pi_{m}^{n} \left( t \right) = \pi_{m\infty }^{n} + a_{7} \left( {G_{0} - G_{\infty }^{n} } \right)e^{ - \sigma t} ,\;\pi_{r}^{n} \left( t \right) = \pi_{r\infty }^{n} + a_{8} \left( {G_{0} - G_{\infty }^{n} } \right)e^{ - \sigma t}$$

(5) The government’s optimal income is as follows:

$$\pi_{g}^{n} \left( t \right) = \pi_{g\infty }^{n} + a_{9} \left( {G_{0} - G_{\infty }^{n} } \right)e^{ - \sigma t}$$

Theorem 6

(1) when \(t \to \infty\),the steady-state product goodwill and waste product recycling rate are, respectively, as follows:

$$G_{\infty }^{n} = \frac{{5\left[ {\alpha + \left( {\mu - \beta c + \beta \Delta } \right)\varepsilon } \right]^{2} }}{{18\beta \sigma \left( {\rho + \sigma } \right)}}\left( {\frac{{\phi^{2} }}{{\eta_{m} }} + \frac{{\lambda^{2} }}{{\eta_{r} }}} \right),\;\tau_{\infty }^{n} = \varepsilon \sqrt {G_{\infty }^{n} } = \varepsilon \left[ {\alpha + \left( {\mu - \beta c + \beta \Delta } \right)\varepsilon } \right]\sqrt {\frac{5}{{18\beta \sigma \left( {\rho + \sigma } \right)}}\left( {\frac{{\phi^{2} }}{{\eta_{m} }} + \frac{{\lambda^{2} }}{{\eta_{r} }}} \right)}$$

(2) when \(t \to \infty\), the steady-state product wholesale price and retail price are, respectively, as follows:

$$\begin{gathered} w_{\infty }^{n} = \frac{{\left[ {\alpha + \left( {\mu + 3\beta b - \beta c - 2\beta \Delta } \right)\varepsilon } \right]\left[ {\alpha + \left( {\mu - \beta c + \beta \Delta } \right)\varepsilon } \right]}}{3\beta }\sqrt {\frac{5}{{18\beta \sigma \left( {\rho + \sigma } \right)}}\left( {\frac{{\phi^{2} }}{{\eta_{m} }} + \frac{{\lambda^{2} }}{{\eta_{r} }}} \right)} ,\; \hfill \\ p_{\infty }^{n} = \frac{{\left[ {2\alpha + \left( {2\mu + \beta c - \beta \Delta } \right)\varepsilon } \right]\left[ {\alpha + \left( {\mu - \beta c + \beta \Delta } \right)\varepsilon } \right]}}{3\beta }\sqrt {\frac{5}{{18\beta \sigma \left( {\rho + \sigma } \right)}}\left( {\frac{{\phi^{2} }}{{\eta_{m} }} + \frac{{\lambda^{2} }}{{\eta_{r} }}} \right)} \hfill \\ \end{gathered}$$

(3) when \(t \to \infty\),the steady-state profits of the manufacturer and retailer are, respectively, as follows:

$$\pi_{m\infty }^{n} = a_{7} G_{\infty }^{n} + d_{7} ,\;\pi_{r\infty }^{n} = a_{8} G_{\infty }^{n} + d_{8}$$

where

$$\begin{gathered} a_{7} = \frac{{\left[ {\alpha + \left( {\mu - \beta c + \beta \Delta } \right)\varepsilon } \right]^{2} }}{{9\beta \left( {\rho + \sigma } \right)}},\;a_{8} = \frac{{\left[ {\alpha + \left( {\mu - \beta c + \beta \Delta } \right)\varepsilon } \right]^{2} }}{{9\beta \left( {\rho + \sigma } \right)}}, \hfill \\ d_{7} = \frac{1}{\rho }\left[ {\frac{{5\phi^{2} \left( {a_{7} } \right)^{2} }}{{4\eta_{m} }} + \frac{{5\lambda^{2} a_{7} a_{8} }}{{2\eta_{r} }}} \right],\;d_{8} = \frac{1}{\rho }\left[ {\frac{{5\lambda^{2} \left( {a_{8} } \right)^{2} }}{{4\eta_{r} }} + \frac{{5\phi^{2} a_{7} a_{8} }}{{2\eta_{m} }}} \right] \hfill \\ \end{gathered}$$

(4) when \(t \to \infty\),the steady-state income of the government is as follows:

$$\pi_{g\infty }^{n} = a_{9} G_{\infty }^{n} + d_{9}$$

where

$$a_{9} = \frac{{5\left[ {\alpha + \left( {\mu - \beta c + \beta \Delta } \right)\varepsilon } \right]^{2} }}{{18\beta \left( {\rho + \sigma } \right)}},\;d_{9} = \frac{{\left( {a_{9} } \right)^{2} }}{2\rho }\left( {\frac{{\phi^{2} }}{{\eta_{m} }} + \frac{{\lambda^{2} }}{{\eta_{r} }}} \right)$$

The proof of Theorem 5 is similar to the proof of Theorem 3 and is omitted.

Appendix 4.4

Theorem 7

(1) The optimal decisions of the LC-CLSC are as follows:

$$\left\{ \begin{gathered} p^{c} = \frac{{\left[ {\alpha + \left( {\mu + \beta c - \beta \Delta } \right)\varepsilon } \right]\sqrt {G^{c} \left( t \right)} }}{2\beta } \hfill \\ E^{c} = \frac{{\phi \left[ {\alpha + \left( {\mu - \beta c + \beta \Delta } \right)\varepsilon } \right]^{2} }}{{4\beta \left( {\rho + \sigma } \right)\left( {1 - \theta_{m}^{c} } \right)\eta_{m} }} \hfill \\ A^{c} = \frac{{\lambda \left[ {\alpha + \left( {\mu - \beta c + \beta \Delta } \right)\varepsilon } \right]^{2} }}{{4\beta \left( {\rho + \sigma } \right)\left( {1 - \theta_{r}^{c} } \right)\eta_{r} }} \hfill \\ \end{gathered} \right.$$

(2) The optimal emission reduction and recycling subsidy rates set by the government are as follows:

$$\theta_{m}^{c} = \frac{1}{3},\;\theta_{r}^{c} = \frac{1}{3}$$

(3) The optimal evolution trajectories of product goodwill and waste product recycling rate are, respectively, as follows:

$$G^{c} \left( t \right) = \left( {G_{0} - G_{\infty }^{c} } \right)e^{ - \sigma t} + G_{\infty }^{c}$$
$$\tau^{c} \left( t \right) = \varepsilon \sqrt {G^{c} \left( t \right)} = \varepsilon \sqrt {\left( {G_{0} - G_{\infty }^{c} } \right)e^{ - \sigma t} + G_{\infty }^{c} }$$

(4) The optimal profit of the LC-CLSC is as follows:

$$\pi_{sc}^{c} \left( t \right) = \pi_{sc\infty }^{c} + a_{10} \left( {G_{0} - G_{\infty }^{c} } \right)e^{ - \sigma t}$$

(5) The government’s optimal income is as follows:

$$\pi_{g}^{c} \left( t \right) = \pi_{g\infty }^{c} + a_{11} \left( {G_{0} - G_{\infty }^{c} } \right)e^{ - \sigma t}$$

Theorem 8

(1) when \(t \to \infty\),the steady-state product goodwill and waste product recycling rate are, respectively, as follows:

$$\begin{gathered} G_{\infty }^{c} = \frac{{3\left[ {\alpha + \left( {\mu - \beta c + \beta \Delta } \right)\varepsilon } \right]^{2} }}{{8\beta \sigma \left( {\rho + \sigma } \right)}}\left( {\frac{{\phi^{2} }}{{\eta_{m} }} + \frac{{\lambda^{2} }}{{\eta_{r} }}} \right),\; \hfill \\ \tau_{\infty }^{c} = \varepsilon \sqrt {G_{\infty }^{c} } = \varepsilon \left[ {\alpha + \left( {\mu - \beta c + \beta \Delta } \right)\varepsilon } \right]\sqrt {\frac{3}{{8\beta \sigma \left( {\rho + \sigma } \right)}}\left( {\frac{{\phi^{2} }}{{\eta_{m} }} + \frac{{\lambda^{2} }}{{\eta_{r} }}} \right)} \hfill \\ \end{gathered}$$

(2) when \(t \to \infty\), the steady-state product retail price is as follows:

$$p_{\infty }^{c} = \frac{{\left[ {\alpha + \left( {\mu + \beta c - \beta \Delta } \right)\varepsilon } \right]\left[ {\alpha + \left( {\mu - \beta c + \beta \Delta } \right)\varepsilon } \right]}}{2\beta }\sqrt {\frac{3}{{8\beta \sigma \left( {\rho + \sigma } \right)}}\left( {\frac{{\phi^{2} }}{{\eta_{m} }} + \frac{{\lambda^{2} }}{{\eta_{r} }}} \right)}$$

(3) when \(t \to \infty\), the steady-state profit of the LC-CLSC is as follows:

$$\pi_{sc\infty }^{c} = a_{10} G_{\infty }^{c} + d_{10}$$

where \(a_{10} = \frac{{\left[ {\alpha + \left( {\mu - \beta c + \beta \Delta } \right)\varepsilon } \right]^{2} }}{{4\beta \left( {\rho + \sigma } \right)}},\;d_{10} = \frac{{3\left( {a_{10} } \right)^{2} }}{4\rho }\left[ {\frac{{\phi^{2} }}{{\eta_{m} }} + \frac{{\lambda^{2} }}{{\eta_{r} }}} \right]\)(4) when \(t \to \infty\), the steady-state income of the government is as follows:

$$\pi_{g\infty }^{c} = a_{11} G_{\infty }^{c} + d_{11}$$

where \(a_{11} = \frac{{3\left[ {\alpha + \left( {\mu - \beta c + \beta \Delta } \right)\varepsilon } \right]^{2} }}{{8\beta \left( {\rho + \sigma } \right)}},\;d_{11} = \frac{{\left( {a_{11} } \right)^{2} }}{2\rho }\left( {\frac{{\phi^{2} }}{{\eta_{m} }} + \frac{{\lambda^{2} }}{{\eta_{r} }}} \right)\)The proof of Theorem 7 is similar to the proof of Theorem 3 and is omitted.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Yu, L. Dynamic decision-making and coordination of low-carbon closed-loop supply chain considering different power structures and government double subsidy. Clean Techn Environ Policy 25, 143–171 (2023). https://doi.org/10.1007/s10098-022-02394-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-022-02394-y

Keywords

Navigation