Skip to main content

Advertisement

Log in

Effect of the climatic conditions in energy efficiency of Spanish existing dwellings

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

The member states of the European Union must increase the energy efficiency in residential buildings within the plan to reduce the external energy dependence and energy shortage. In the present work, a standard building representative of the existing buildings in Spain built before 1980 was used. An evaluation of the energy rating of that building in each climatic zone of Spain was carried out to assess the influence of these climatic conditions on energy consumption and greenhouse gas emissions. This analysis was carried out with Cerma software according to the calculation procedure demanded by the Spanish Building Technical Code. Results show that E or F energy score was obtained for the different climatic zones and with significant differences in CO2 emissions, even for climatic zones with the same energy rating. A sensitivity study of the necessary enhancements in each climatic zone was carried out to analyze the influence of most common energy demand and thermal system improvements, and combinations of them. Also, the minimum requirements to obtain D qualification in each Spanish climatic zone were obtained. As a result, it is possible to reduce emissions in Spain by over 3.5 Mt CO2 per year. In climatic zones with initial qualification E, it is possible to reach a D label, avoiding 40% of the initial CO2 emissions and reducing primary energy consumption to about 50 kWh/m2 year (over 60% reduction). For the climatic zones with initial qualification F, over 53% of the initial CO2 emissions are avoided by reaching D label. Zones with the highest heating demand (over 230 kWh/m2 year) and very low cooling demand need to improve thermal systems by means of a heat pump. Finally, some policy measures to create lines of financial aids or subsidies for the implementation of actions to reduce energy demand in Spanish homes are proposed.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

I 0 :

CO2 emissions generated by the building (kg CO2/m2 year)

I r :

Average CO2 emissions from residential buildings strictly meeting CTE requirements (kg CO2/m2 year)

I S :

Average CO2 emissions from existing residential buildings in 2006 (kg CO2/m2 year)

nr:

Air renewals

R :

Ratio between CO2 emissions of 50th and 10th percentiles in residential buildings strictly meeting BTC requirements

R′:

Ratio between CO2 emissions of 50th and 10th percentiles in existing residential building stock

U :

Thermal transmittance (W/m2 K)

λ :

Thermal conductivity (W/m2 K)

σ 1 :

First energy efficiency rating index

σ 2 :

Second energy efficiency rating index

Bio:

Biomass

BREEAM:

Building Research Establishment Environmental Assessment Method

BTC:

Building Technical Code

COP:

Coefficient of performance

DHW:

Domestic hot water

EEOnt:

Energy efficiency ontology

EER:

Energy efficiency ratio

EESs:

Energy efficiency services

EU:

European Union

GHG:

Greenhouse gases

HP:

Heat pump

IDAE:

Institute for Energy Diversification and Saving

IEA:

International Energy Agency

INE:

National Statistics Institute

LEED:

Leadership in Energy and Environmental Design

LPG:

Liquefied petroleum gas

MINETUR:

Ministry of Industry, Energy and Tourism

MSF:

Modified solar factor

NBC:

National Building Code

NEEAP:

National Energy Efficiency Action Plan

NG:

Natural gas

RBHI:

Regulations on Building Heating Installations

RD:

Royal decree

SB:

Standard building

SF:

Solar factor

TI:

Thermal insulation

CO2 :

Carbon dioxide

References

  • Andaloro AP, Salomone R, Ioppolo G, Andaloro L (2010) Energy certification of buildings: a comparative analysis of progress towards implementation in European countries. Energy Policy 38:5840–5866

    Article  Google Scholar 

  • Bagheri F, Mokarizadeh V, Jabbar M (2013) Developing energy performance label for office buildings in Iran. Energy Build 61:116–124

    Article  Google Scholar 

  • Borgstein EH, Lamberts R, Hensen JLM (2016) Evaluating energy performance in non-domestic buildings: a review. Energy Build 128:734–755

    Article  Google Scholar 

  • Carpio M, Martín-Morales M, Zamorano M (2015) Comparative study by an expert panel of documents recognized for energy efficiency certification of buildings in Spain. Energy Build 99:98–103

    Article  Google Scholar 

  • Cerma (2017) Certificación de Eficiencia Energética de Edificios de viviendas nuevos y existentes. Cerma software v.4.2.5

  • Chandel SS, Sharma A, Marwaha BM (2016) Review of energy efficiency initiatives and regulations for residential buildings in India. Renew Sustain Energy Rev 54:1443–1458

    Article  Google Scholar 

  • Cuchí A (2016) Diagnóstico de la rehabilitación en Comunidades Autónomas. Fundación CONAMA, Madrid. ISBN: 978-84-617-4203-5

  • De Boeck L, Verbeke S, Audenaert A, De Mesmaeker L (2015) Improving the energy performance of residential buildings: a literature review. Renew Sustain Energy Rev 52:960–975

    Article  Google Scholar 

  • Directive 2012/27/EU of the European Parliament and Council on Energy Efficiency, amending Directives 2009/125/EC and 2010/30/EU and Repealing Directive 2004/8/EC and 2006/32/EC. Official J Eur Union Brussels, Belgium, October 2012

  • European Commission (2011) Energy efficiency plan 2011. COM109. Brussels

  • European Commission (2019) Energy topics. https://ec.europa.eu/energy/en/topics/energyefficiency/bui. Accessed 20 August 2019

  • European Directive 2010/31/EU of the European Parliament and of the Council, on the Energy Performance of buildings. https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2012:315:0001:0056:en:PDF. Accessed 20 August 2019

  • Eurostat (2019) Energy balances: final energy consumption by sector. https://ec.europa.eu/eurostat/web/energy/data/energy-balances. Accessed 20 August 2019

  • Gaglia AG, Dialynas EN, Argiriou AA, Kostopoulou E, Tsiamitros D, Stimoniaris D, Laskos KM (2019) Energy performance of European residential buildings: energy use, technical and environmental characteristics of the Greek residential sector-energy conservation and CO2 reduction. Energy Build 183:86–104

    Article  Google Scholar 

  • Gamalath I, Hewage K, Ruparathna R, Karunathilake H, Prabatha T, Sadiq R (2018) Energy rating system for climate conscious operation of multi-unit residential buildings. Clean Technol Environ Policy 20(4):785–802

    Article  Google Scholar 

  • Gangolells M, Casals M, Forcada N, Macarulla M, Cuerva E (2016) Energy mapping of existing building stock in Spain. J Clean Prod 112:3895–3904

    Article  Google Scholar 

  • Harris DJ (1999) A quantitative approach to the assessment of the environmental impact of building materials. Build Environ 34(6):751–758

    Article  Google Scholar 

  • Heidarinejad M, Dahlhausen M, McMahon S, Pyke C, Srebric J (2014) Cluster analysis of simulated energy use for LEED certified US office buildings. Energy Build 85:86–97

    Article  Google Scholar 

  • Hossaini N, Hewage K, Sadiq R (2015) Spatial life cycle sustainability assessment: a conceptual framework for net-zero buildings. Clean Technol Environ Policy 17(8):2243–2253

    Article  Google Scholar 

  • Hu M, Qiu Y (2019) A comparison of building energy codes and policies in the USA, Germany, and China: progress toward the net-zero building goal in three countries. Clean Technol Environ Policy 21(2):291–305

    Article  Google Scholar 

  • Instituto para la Diversificación y Ahorro de la Energía (IDAE) (2011) Proyecto SECH-SPAHOUSEC Análisis del consumo energético del sector residencial en España. https://www.idae.es/uploads/documentos/documentos_Informe_SPAHOUSEC_ACC_f68291a3.pdf. Accessed 20 August 2019

  • Instituto para la Diversificación y Ahorro de la Energía (IDAE) (2016) PROGRAMA PAREER-CRECE. https://www.idae.es/ayudas-y-financiacion/para-rehabilitacion-de-edificios-programa-pareer/programa-de-ayudas-para-la. Accessed 20 August 2019

  • International Energy Agency (IEA) (2010) Energy Performance Certification of Buildings. A policy tool to improve energy Efficiency. OECD/IEA, Paris

    Google Scholar 

  • Labanca N, Suerkemper F, Bertoldi P, Irrek W, Duplessis B (2015) Energy efficiency services for residential buildings: market situation and existing potentials in the European Union. J Clean Prod 109:284–295

    Article  Google Scholar 

  • Martínez-Molina A, Tort-Ausina I, Cho S, Vivancos JL (2016) Energy efficiency and thermal comfort in historic buildings: a review. Renew Sustain Energy Rev 61:70–85

    Article  Google Scholar 

  • Milutienė E, Staniškis JK, Kručius A, Augulienė V, Ardickas D (2012) Increase in buildings sustainability by using renewable materials and energy. Clean Technol Environ Policy 14(6):1075–1084

    Article  Google Scholar 

  • Ministerio de Fomento (Gobierno de España) (2014) Estrategia a largo plazo para la rehabilitación energética en el sector de la Edificación en España. https://www.fomento.gob.es/el-ministerio/planes-estrategicos/estrategia-a-largo-plazo-para-la-rehabilitacion-energetica-en-el-sector-de-la-edificacion-en-espana. Accessed 20 August 2019

  • Ministerio de Fomento (Gobierno de España) (2019) Código Técnico de la Edificación (CTE, in English BTC). https://www.codigotecnico.org/. Accessed 20 August 2019

  • Ministerio de Industria, Energía y Turismo (Gobierno de España) (2011) Instituto para la Diversificación y Ahorro de Energía (IDAE). Escala de Calificación energética de edificios existentes y Edificios de nueva construcción. IDAE, Madrid

    Google Scholar 

  • Ministerio de Industria, Energía y Turismo (Gobierno de España) (2014) Plan Nacional de Acción y Eficiencia Energética 2014–2020 (NEEAP 2014–2020). Madrid. Spain. https://www.idae.es/tecnologias/eficiencia-energetica/plan-nacional-de-accion-de-eficiencia-energetica-2017-2020. Accessed 20 August 2019

  • Pérez-Lombard L, Ortiz J, González R, Maestre IR (2009) A review of benchmarking, rating and labelling concepts within the framework of building energy certification schemes. Energy Build 41(3):272–278

    Article  Google Scholar 

  • Poel B, Van Cruchten G, Balaras CA (2007) Energy performance assessment of existing dwellings. Energy Build 39:393–403

    Article  Google Scholar 

  • Real Decreto 1027/2007, de 20 de julio, por el que se aprueba el Reglamento de Instalaciones Térmicas en los Edificios, (RITE). https://www.boe.es/buscar/doc.php?id=BOE-A-2007-15820. Accessed 20 August 2019

  • Real Decreto 235/2013, de 5 de abril, por el que se aprueba el procedimiento básico para la certificación de la eficiencia energética de los edificios. https://www.boe.es/buscar/act.php?id=BOE-A-2013-3904. Accessed 20 August 2019

  • Real Decreto 314/2006, de 17 de marzo, por el que se aprueba el Código Técnico de la Edificación (BTE, in Spanish CTE). https://www.boe.es/buscar/doc.php?id=BOE-A-2006-5515. Accessed 20 August 2019

  • Ríos JC (2019) A novel integrated waste energy reroofy system (IWERS) by thermal flows: a supermarket sector case. Sustain Prod Consum 19:97–104

    Article  Google Scholar 

  • Salleh MNM, Kandar MZ, Sakip SRM (2016) Benchmarking for energy efficiency on school buildings design: a review. Proc Soc Behav Sci 222:211–218

    Article  Google Scholar 

  • Scofield JH (2013) Efficacy of LEED-certification in reducing energy consumption and greenhouse gas emission for large New York City office buildings. Energy Build 67:517–524

    Article  Google Scholar 

  • Silvero F, Rodrigues F, Montelpare S, Spacone E, Varum H (2019) The path towards buildings energy efficiency in South American countries. Sustain Cities Soc 44:646–665

    Article  Google Scholar 

  • Terés-Zubiaga J, Campos-Celador A, González-Pinoa I, Escudero-Revilla C (2015) Energy and economic assessment of the envelope retrofitting in residential buildings in Northern Spain. Energy Build 86:194–202

    Article  Google Scholar 

  • Trashorras AJ, González JM, Álvarez E, Sánchez JP (2015) Certification of energy efficiency in new buildings: a comparison among the different climatic zones of Spain. IEEE Trans Ind Appl 51(4):2726–2731

    Article  CAS  Google Scholar 

  • US Green Building Council (2013) LEED 2009 for schools new construction and major renovations rating system. Green Building Council, Washington

    Google Scholar 

  • Vinagre JJ, González JM, Wilby MR, Rodríguez AB, García J (2013) EEOnt: an ontological model for a unified representation of energy efficiency in buildings. Energy Build 60:20–27

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Carlos Ríos Fernández.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ríos Fernández, J.C., González-Caballín, J.M. & Gutiérrez-Trashorras, A.J. Effect of the climatic conditions in energy efficiency of Spanish existing dwellings. Clean Techn Environ Policy 22, 211–229 (2020). https://doi.org/10.1007/s10098-019-01778-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-019-01778-x

Keywords

Navigation