Skip to main content
Log in

Adsorption, desorption, and kinetic study on Cr(III) removal from aqueous solution using Bacillus subtilis biomass

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

Discharge of untreated industrial effluents containing heavy metals is hazardous to the environment as they are highly toxic and accumulates throughout the food chain. This study reports the removal of trivalent chromium from aqueous solution using Bacillus subtilis biomass, best suited for the treatment of real tannery effluents since Cr(III) salt is used for tanning. The optimum pH and temperature for biosorption was found to be 4.0 and 60°C, respectively. A biosorbent dosage of 1 g l−1 showed maximum metal uptake (q e ) of 23.9 mg g−1 for an initial metal concentration of 100 ppm. Pseudo-second-order kinetics best describes the adsorption process. Best fit for adsorption was obtained with Freundlich model. Desorption experiments with 5 M NaOH, inferred the reusability of the biomass. Fourier transform-infrared spectroscopy was used to study the mechanism of metal binding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abbas M, Nadeem R, Zaffer MN (2008) Biosorption of chromium(III) and chromium(VI) by untreated and pretreated Cassia fistula biomass from aqueous solutions. Water Air Soil Pollut 191(1–4):139–148

    Article  CAS  Google Scholar 

  • Aravindhan R, Madhan B, Rao JR, Nair BU (2004a) Recovery and reuse of chromium from tannery wastewaters using Turbinaria ornata seaweed. J Chem Technol Biotechnol 79:1251–1258

    Article  CAS  Google Scholar 

  • Aravindhan R, Madhan B, Rao JR, Nair BU, Ramasami T (2004b) Bioaccumulation of chromium from tannery waste waters: an approach for chrome recovery and reuse. Environ Sci Technol 38:300–306

    Article  CAS  Google Scholar 

  • Bai RS, Abraham TE (2001) Biosorption of chromium(VI) from aqueous solution by Rhizopus nigricans. Bioresour Technol 79:73–81

    Article  Google Scholar 

  • Barrett J, Yonge CM (1977) Collins pocket guide to the sea shore. Collins, London, p 272

    Google Scholar 

  • Bishnoi NR, Kumar R, Kumar S, Rani S (2007) Biosorption of Cr(III) from aqueous solution using algal biomass Spirogyra spp. J Hazard Mater 145(1–2):142–147

    Article  CAS  Google Scholar 

  • Boyanov MI, Kelly SD, Kemner KM, Bunker BA, Fein JB, Fowle DA (2003) Adsorption of cadmium to Bacillus subtilis bacterial cell walls: a pH-dependent X-ray absorption fine structure spectroscopy study. Geochim Cosmochim Acta 67:3299–3311

    Article  CAS  Google Scholar 

  • Buljan J (1996) Pollution limits for discharge of tannery effluent in water bodies and sewers. World Leather November, 65

  • Comte S, Guibaud G, Baudu M (2008) Biosorption properties of extracellular polymeric substances (EPS) towards Cd, Cu and Pb for different pH values. J Hazard Mater 151:185–193

    Article  CAS  Google Scholar 

  • Costa M (2003) Potential hazards of hexavalent chromate in our drinking water. Toxicol Appl Pharmacol 188:1–5

    Article  CAS  Google Scholar 

  • Donmez G, Aksu Z (2002) Removal of chromium(VI) from saline wastewater by Dunaliela species. Process Biochem 38:751–762

    Article  CAS  Google Scholar 

  • Freundlich H (1906) Adsorption in solution. Phys Chem Soc 40:1361–1368

    Google Scholar 

  • Hanif MA, Nadeem R, Bhatti HN, Ahmad NR, Ansari TM (2007) Ni(II) biosorption by Cassia fistula (Golden Shower) biomass. J Hazard Mater 139:345–355

    Article  CAS  Google Scholar 

  • Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465

    Article  CAS  Google Scholar 

  • James BR, Bartlett RJ (1984) Plant—soil interaction of chromium. J Environ Qual 13:67–70

    Article  CAS  Google Scholar 

  • Krishnani KK, Meng XG, Christodoulatos C, Boddu VM (2008) Biosorption mechanism of nine different heavy metals onto biomatrix from rice husk. J Hazard Mater 153:1222–1234

    Article  CAS  Google Scholar 

  • Kumari P, Sharma P, Srivastava S, Srivastava MM (2005) Arsenic removal from the aqueous system using plant biomass: a bioremedial approach. J Ind Microbiol Biotechnol 32:521–526

    Article  CAS  Google Scholar 

  • Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica, and platinum. J Am Chem Soc 40:1361–1368

    Article  CAS  Google Scholar 

  • Machado MD, Soares HMVM, Soares EV (2010) Removal of chromium, copper, and nickel from an electroplating effluent using a flocculant Brewer’s yeast strain of Saccharomyces cerevisiae. Water Air Soil Pollut 212:199–204

    Article  CAS  Google Scholar 

  • Markai S, Andres Y, Montavon G, Grambow B (2003) Study of the interaction between europium (III) and Bacillus subtilis: fixation sites, biosorption modeling and reversibility. J Coll Interface Sci 262:351–361

    Article  CAS  Google Scholar 

  • Mohan D, Singh KP, Singh VK (2006) Trivalent chromium removal from wastewater using low cost activated carbon derived from agricultural waste material and activated carbon fabric cloth. J Hazard Mater 135:280–295

    Article  CAS  Google Scholar 

  • Nakamoto K (1986) Infrared and Raman spectra of inorganic and coordination compounds, 4th edn. Wiley, New York

    Google Scholar 

  • Namasivayam C, Kanchana N (1993) Removal of Congo red from aqueous solutions by waste banana pith. Pertanika 1:32–42

    Google Scholar 

  • Nourbakash M, Sag Y, Ozer D, Aksu Z, Caglar AA (1994) Comparative study of various biosorbents for removal of Cr(VI) from industrial waste water. Process Biochem 29:1–5

    Article  Google Scholar 

  • Shrivastava HY, Nair BU (2001) Chromium(III) mediated structural modifications of glycoproteins—impact of ligand and the oxidants. Biochem Biophys Res Commun 285:915–920

    Article  CAS  Google Scholar 

  • Silverstein RM, Bassler GC, Morill TC (1991) Spectrophotometric identification of organic compounds. Wiley, New York, pp 109–130

    Google Scholar 

  • Sivaprakash A, Aravindhan R, Rao JR, Nair BU (2009) Kinetics and equilibrium studies on the Biosorption of hexavalent chromium from aqueous solutions using Bacillus subtilis biomass. Appl Ecol Environ Res 7:45–57

    Google Scholar 

  • Turan P, Dogan M, Alkan M (2007) Uptake of trivalent chromium ions from aqueous solutions using kaolinite. J Hazard Mater 148:56–63

    Article  CAS  Google Scholar 

  • Vogel AI (1989) Vogel’s textbook of quantitative chemical analysis, 5th edn. Longman Inc, Essex

    Google Scholar 

  • Wong PK, So CM (1993) Copper accumulation by a strain of Pseudomonas putida. Microbios 73:113–121

    CAS  Google Scholar 

  • Xu H, Shan WY, Yee TMN (2006) Surface complexation mechanism and modeling in Cr(III) biosorption by a microalgal isolate Chlorella miniata. J Coll interface Sci 303(2):365–371

    Article  Google Scholar 

  • Yadav S, Shukla OP, Rai UN (2005) Chromium pollution and bioremediation. Environ News Newslett Int Soc Environ Bot 11:1

    CAS  Google Scholar 

  • Yun YS, Park D, Park JM, Volesky B (2001) Biosorption of trivalent chromium on the brown seaweed biomass. Environ Sci Technol 35:4353–4358

    Article  CAS  Google Scholar 

  • Zhou JL, Kiff RJ (1991) The uptake of copper from aqueous solution by immobilized fungal biomass. J Chem Technol Biotechnol 52:317–340

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors are grateful to the Council of Scientific and Industrial Research, Government of India, New Delhi for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonnalagada Raghava Rao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aravindhan, R., Aafreen Fathima, Selvamurugan, M. et al. Adsorption, desorption, and kinetic study on Cr(III) removal from aqueous solution using Bacillus subtilis biomass. Clean Techn Environ Policy 14, 727–735 (2012). https://doi.org/10.1007/s10098-011-0440-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-011-0440-7

Keywords

Navigation