Skip to main content
Log in

Metabolomics unveil key pathways underlying the synergistic activities of aztreonam and avibactam against multidrug-resistant Escherichia coli

  • Research
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Purpose

Aztreonam/avibactam is effective against serious infections caused by Gram-negative bacteria including Enterobacterales harboring metallo-β-lactamases. While the utility of this combination has been established in vitro and in clinical trials, the purpose of this study is to enhance our understanding of the underlying mechanism responsible for their activities through metabolomic profiling of a multidrug-resistant Escherichia coli clinical isolate.

Methods

Metabolomic analyses of time-dependent changes in endogenous bacterial metabolites in a clinical isolate of a multidrug-resistant E. coli treated with aztreonam and avibactam were performed. E. coli metabolomes were compared at 15 min, 1 h and 24 h following treatments with either avibactam (4 mg/L), aztreonam (4 mg/L), or aztreonam (4 mg/L) + avibactam (4 mg/L).

Results

Drug treatment affected 326 metabolites with magnitude changes of at least 2-fold, most of which are involved primarily in peptidoglycan biosynthesis, nucleotide metabolism, and lipid metabolism. The feedstocks for peptidoglycan synthesis were depleted by aztreonam/avibactam combination; a significant downstream increase in nucleotide metabolites and a release of lipids were observed at the three timepoints.

Conclusion

The findings indicate that the aztreonam/avibactam combination accelerates structural damage to the bacterial membrane structure and their actions were immediate and sustained compared to aztreonam or avibactam alone. By inhibiting the production of crucial cell wall precursors, the combination may have inflicted damages on bacterial DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data presented in the study are deposited in the NCBI BioProject repository, accession number PRJNA1062769.

References

  1. Hutchings MI, Truman AW, Wilkinson B (2019) Antibiotics: past, present and future. Curr Opin Microbiol 51:72–80

    Article  CAS  PubMed  Google Scholar 

  2. Oo C, Zhang X, Sy SKB (2023) Evaluating the status of antibiotic approvals and readiness to combat antimicrobial resistance: what else can we do better? Drug Discov Today 28(8):103674

    Article  CAS  PubMed  Google Scholar 

  3. Oo C, Sy SKB (2020) Learning and augmenting natural processes: potential means of combating antimicrobial resistance from a drug R&D perspective. Drug Discov Today 25(1):1–3

    Article  PubMed  Google Scholar 

  4. Cornely OA, Cisneros JM, Torre-Cisneros J, Rodríguez-Hernández MJ, Tallón-Aguilar L, Calbo E, Horcajada JP, Queckenberg C, Zettelmeyer U, Arenz D, Rosso-Fernández CM, Jiménez-Jorge S, Turner G, Raber S, O’Brien S, Luckey A (2020) Pharmacokinetics and safety of aztreonam/avibactam for the treatment of complicated intra-abdominal infections in hospitalized adults: results from the REJUVENATE study. J Antimicrob Chemother 75(3):618–627

    Article  CAS  PubMed  Google Scholar 

  5. Sy SK, Beaudoin ME, Zhuang L, Loblein KI, Lux C, Kissel M, Tremmel R, Frank C, Strasser S, Heuberger JA, Mulder MB, Schuck VJ, Derendorf H (2016) In vitro pharmacokinetics/pharmacodynamics of the combination of avibactam and aztreonam against MDR organisms. J Antimicrob Chemother 71(7):1866–1880

    Article  CAS  PubMed  Google Scholar 

  6. Sy S, Zhuang L, Xia H, Beaudoin ME, Schuck VJ, Derendorf H (2017) Prediction of in vivo and in vitro infection model results using a semi-mechanistic model of avibactam and aztreonam combination against multidrug resistant organisms. CPT: Pharmacometrics Syst Pharmacol 6(3):197–207

    CAS  PubMed  Google Scholar 

  7. Davido B, Fellous L, Lawrence C, Maxime V, Rottman M, Dinh A (2017) Ceftazidime-avibactam and aztreonam, an interesting strategy to overcome beta-lactam resistance conferred by metallo-beta-lactamases in Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrob Agents Chemother 61(9):e01008–01017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Falcone M, Daikos GL, Tiseo G, Bassoulis D, Giordano C, Galfo V, Leonildi A, Tagliaferri E, Barnini S, Sani S, Farcomeni A, Ghiadoni L, Menichetti F (2021) Efficacy of ceftazidime-avibactam plus aztreonam in patients with bloodstream infections caused by metallo-β-lactamase-producing Enterobacterales. Clin Infect Dis 72(11):1871–1878

    Article  CAS  PubMed  Google Scholar 

  9. Feng K, Jia N, Zhu P, Sy S (2021) Aztreonam/avibactam effect on pharmacodynamic indices for mutant selection of Escherichia coli and Klebsiella pneumoniae harbouring serine- and New Delhi metallo-β-lactamases. J Antimicrob Chemother 76(11):2875–2883

    Article  CAS  PubMed  Google Scholar 

  10. Stachyra T, Pechereau MC, Bruneau JM, Claudon M, Frere JM, Miossec C, Coleman K, Black MT (2010) Mechanistic studies of the inactivation of TEM-1 and P99 by NXL104, a novel non-beta-lactam beta-lactamase inhibitor. Antimicrob Agents Chemother 54(12):5132–5138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shields RK, Doi Y (2020) Aztreonam combination therapy: an answer to metallo-β-lactamase-producing gram-negative bacteria? Clin Infect Dis 71(4):1099–1101

    Article  CAS  PubMed  Google Scholar 

  12. Zhu S, Yue J, Wang X, Zhang J, Yu M, Zhan Y, Zhu Y, Sy SKB, Lv Z (2023) Metabolomics revealed mechanism for the synergistic effect of sulbactam, polymyxin-B and amikacin combination against Acinetobacter baumannii. Front Microbiol 14:1217270

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zhu S, Zhang J, Song C, Liu Y, Oo C, Heinrichs MT, Lv Z, Zhu Y, Sy SKB, Deng P, Yu M (2022) Metabolomic profiling of polymyxin-B in combination with meropenem and sulbactam against multi-drug resistant Acinetobacter baumannii. Front Microbiol 13:1013934

    Article  PubMed  PubMed Central  Google Scholar 

  14. Jiang M, Li X, Xie CL, Chen P, Luo W, Lin CX, Wang Q, Shu DM, Luo CL, Qu H, Ji J (2023) Fructose-enabled killing of antibiotic-resistant Salmonella enteritidis by gentamicin: insight from reprogramming metabolomics. Int J Antimicrob Agents 62(3):106907

    Article  CAS  PubMed  Google Scholar 

  15. Zhang J, Yang H, Zhang L, Lv Z, Yu M, Sy SKB, Zhan Y (2023) Comparative metabolomics reveal key pathways associated with the synergistic activities of aztreonam and clavulanate combination against multidrug-resistant Escherichia coli. mSystems:e0075823

  16. CLSI (2024) Performance Standards for Antimicrobial Susceptibility Testing. 34th ed. CLSI document M100. Clinical and Laboratory Standards Institute, Wayne, PA

  17. Zhao J, Han ML, Zhu Y, Lin YW, Wang YW, Lu J, Hu Y, Tony Zhou Q, Velkov T, Li J (2021) Comparative metabolomics reveals key pathways associated with the synergistic activity of polymyxin B and rifampicin combination against multidrug-resistant Acinetobacter baumannii. Biochem Pharmacol 184:114400

    Article  CAS  PubMed  Google Scholar 

  18. Morrison L, Zembower TR (2020) Antimicrobial resistance. Gastrointest Endosc Clin N Am 30(4):619–635

    Article  PubMed  Google Scholar 

  19. McEwen SA, Collignon PJ (2018) Antimicrobial Resistance: a one health perspective. Microbiol Spectr 6(2):2

    Article  Google Scholar 

  20. Murray CJL, Ikuta KS, Sharara F (2022) Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399(10325):629–655

    Article  CAS  Google Scholar 

  21. Durante-Mangoni E, Andini R, Zampino R (2019) Management of carbapenem-resistant Enterobacteriaceae infections. Clin Microbiol Infect 25(8):943–950

    Article  CAS  PubMed  Google Scholar 

  22. Lutgring JD (2019) Carbapenem-resistant Enterobacteriaceae: an emerging bacterial threat. Semin Diagn Pathol 36(3):182–186

    Article  PubMed  Google Scholar 

  23. Rodríguez-Baño J, Gutiérrez-Gutiérrez B, Machuca I, Pascual A (2018) Treatment of infections caused by extended-spectrum-β-lactamase-, AmpC-, and carbapenemase-producing Enterobacteriaceae. Clin Microbiol Rev 31(2):e00079–e00017

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wu S, Zong Z (2022) Aztreonam-avibactam: an option against carbapenem-resistant enterobacterales with emerging resistance. Precision Clin Med 5(4):pbac029

    Article  Google Scholar 

  25. Yu W, Xiong L, Luo Q, Chen Y, Ji J, Ying C, Liu Z, Xiao Y (2021) In Vitro Activity comparison of ceftazidime-avibactam and aztreonam-avibactam against bloodstream infections with carbapenem-resistant organisms in China. Front Cell Infect Microbiol 11:780365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Crandon JL, Nicolau DP (2013) Human simulated studies of aztreonam and aztreonam-avibactam to evaluate activity against challenging gram-negative organisms, including metallo-β-lactamase producers. Antimicrob Agents Chemother 57(7):3299–3306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sy SKB, Derendorf H (2018) Experimental design and modelling approach to evaluate efficacy of β-lactam/β-lactamase inhibitor combinations. Clin Microbiol Infect 24(7):707–715

    Article  CAS  PubMed  Google Scholar 

  28. Eltzschig HK, Weissmüller T, Mager A, Eckle T (2006) Nucleotide metabolism and cell-cell interactions. Methods Mol Biol 341:73–87

    CAS  Google Scholar 

  29. Warner DF, Evans JC, Mizrahi V (2014) Nucleotide metabolism and DNA replication. Microbiol Spectr 2(5):5

    Article  Google Scholar 

  30. Pankey GA, Sabath LD (2004) Clinical relevance of Bacteriostatic versus Bactericidal mechanisms of Action in the treatment of Gram-positive bacterial infections. Clin Infect Dis 38(6):864–870

    Article  CAS  PubMed  Google Scholar 

  31. Finberg RW, Moellering RC, Tally FP, Craig WA, Pankey GA, Dellinger EP, West MA, Joshi M, Linden PK, Rolston KV, Rotschafer JC, Rybak MJ (2004) The importance of bactericidal drugs: future directions in infectious disease. Clin Infect Dis 39(9):1314–1320

    Article  CAS  PubMed  Google Scholar 

  32. Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ (2007) A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130(5):797–810

    Article  CAS  PubMed  Google Scholar 

  33. Farr SB, Kogoma T (1991) Oxidative stress responses in Escherichia coli and Salmonella typhimurium. Microbiol Rev 55(4):561–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Miller C, Thomsen LE, Gaggero C, Mosseri R, Ingmer H, Cohen SN (2004) SOS response induction by ß-Lactams and bacterial defense against antibiotic lethality. Science 305(5690):1629–1631

    Article  CAS  PubMed  Google Scholar 

  35. Delcour AH (2009) Outer membrane permeability and antibiotic resistance. Biochim Biophys Acta 1794(5):808–816

    Article  CAS  PubMed  Google Scholar 

  36. MacNair Craig R, Brown Eric D (2020) Outer membrane disruption overcomes intrinsic, acquired, and spontaneous antibiotic resistance. mBio 11(5):01615–01620

    Google Scholar 

  37. Ayoub Moubareck C (2020) Polymyxins and bacterial membranes: a review of antibacterial activity and mechanisms of resistance. Membr 10(8):8

    Google Scholar 

  38. Livermore DM, Mushtaq S, Warner M, Miossec C, Woodford N (2008) NXL104 combinations versus Enterobacteriaceae with CTX-M extended-spectrum beta-lactamases and carbapenemases. J Antimicrob Chemother 62(5):1053–1056

    Article  CAS  PubMed  Google Scholar 

  39. Stachyra T, Levasseur P, Pechereau MC, Girard AM, Claudon M, Miossec C, Black MT (2009) In vitro activity of the β-lactamase inhibitor NXL104 against KPC-2 carbapenemase and Enterobacteriaceae expressing KPC carbapenemases. J Antimicrob Chemother 64(2):326–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kang Y, Xie L, Yang J, Cui J (2023) Optimal treatment of ceftazidime-avibactam and aztreonam-avibactam against bloodstream infections or lower respiratory tract infections caused by extensively drug-resistant or pan drug-resistant (XDR/PDR) Pseudomonas aeruginosa. Front Cell Infect Microbiol 13:1023948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by Qingdao Key Health Discipline Development Fund.

Author information

Authors and Affiliations

Authors

Contributions

All authors (i) contributed to the design of the study, acquisition, or analysis of data, (ii) drafted or revised the article for intellectual content, and (iii) approved the final version.

Corresponding authors

Correspondence to Sherwin K. B. Sy or Hai Yang.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Zhang, J., Chen, J. et al. Metabolomics unveil key pathways underlying the synergistic activities of aztreonam and avibactam against multidrug-resistant Escherichia coli. Eur J Clin Microbiol Infect Dis (2024). https://doi.org/10.1007/s10096-024-04837-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10096-024-04837-4

Keywords

Navigation