Skip to main content

Advertisement

Log in

Chlorhexidine leads to the evolution of antibiotic-resistant Pseudomonas aeruginosa

  • Original Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Antimicrobial resistance is a major public-health concern. We evaluate chlorhexidine role in selection of resistant Pseudomonas aeruginosa mutants and their antibiotic cross-resistance. Mutation frequency and mutation rate after short-term exposure to sub-inhibitory concentrations of chlorhexidine were compared to those after spontaneous chlorhexidine-exposure, in P. aeruginosa PAO1 strain. Chlorhexidine-resistant mutants were generated, either by serial passage in increasing chlorhexidine concentrations or by single exposure to lethal chlorhexidine concentration. The generated mutants were tested for cross-resistance to different antibiotics, by determination of minimum inhibitory concentrations (MIC). The accompanied phenotypic changes in membrane permeability, outer membrane proteins (OMP), and efflux function were evaluated. The effect of exposure to chlorhexidine on MexAB-OprM, MexEF-oprN, and MexXY efflux pumps expression was investigated. No significant change was recorded between the mutation frequencies and mutation rates after short-term exposure to sub-inhibitory concentrations of chlorhexidine and after spontaneous chlorhexidine-exposure, in P. aeruginosa PAO1 strain. Twelve stable mutants, with ≥ eight-fold increase in chlorhexidine MIC, were generated. Several mutants showed increase in the MIC of colistin, cefepime, ceftazidime, meropenem, ciprofloxacin, and amikacin; seven mutants expressed meropenem cross-resistance. This was accompanied by decreased outer membrane permeability and changes in OMP. Using efflux pump inhibitor, chlorhexidine resistance was reverted in most isolates. Exposure to sub-inhibitory concentration of chlorhexidine induced the expression of MexXY efflux pump. Some resistant mutants had overexpressed MexXY efflux pump. Chlorhexidine can select P. aeruginosa strains with antibiotic cross-resistance. This necessitates implementing special protocols for chlorhexidine use and re-evaluation of its benefit versus risk in personal-care products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Centers for Disease Control and Prevention. 2019 AR threats report [Internet]. 2019; https://www.cdc.gov/drugresistance/biggest-threats.html?CDC_AA_refVal=https%3A%2F%2Fwww.cdc.gov%2Fdrugresistance%2Fbiggest_threats.html

  2. Willyard C (2017) The drug-resistant bacteria that pose the greatest health threats. Nat News 543:15

    Article  CAS  Google Scholar 

  3. Chuanchuen R, Beinlich K, Hoang TT, Becher A, Karkhoff-Schweizer RR, Schweizer HP (2001) Cross-resistance between triclosan and antibiotics in Pseudomonas aeruginosa is mediated by multidrug efflux pumps: exposure of a susceptible mutant strain to triclosan selects nfxB mutants overexpressing MexCD-OprJ. Antimicrob Agents Chemother. 45:428–432. https://www.ncbi.nlm.nih.gov/pubmed/11158736: https://doi.org/10.1128/AAC.45.2.428-432.2001

  4. Morita Y, Murata T, Mima T, Shiota S, Kuroda T, Mizushima T et al (2003) Induction of mexCD-oprJ operon for a multidrug efflux pump by disinfectants in wild-type Pseudomonas aeruginosa PAO1. J Antimicrob Chemother 51:991–994. https://doi.org/10.1093/jac/dkg173

    Article  CAS  PubMed  Google Scholar 

  5. Slipski CJ, Zhanel GG, Bay DC (2018) Biocide selective TolC-independent efflux pumps in Enterobacteriaceae. J Membr Biol 251:15–33. https://doi.org/10.1007/s00232-017-9992-8

    Article  CAS  PubMed  Google Scholar 

  6. FDA issues final rule on safety and effectiveness of antibacterial soaps | FDA. FDA (2016) [cited 2019 24]; https://www.fda.gov/news-events/press-announcements/fda-issues-final-rule-safety-and-effectiveness-antibacterial-soaps. Accessed 29 May 2017

  7. Horner C, Mawer D, Wilcox M (2012) Reduced susceptibility to chlorhexidine in staphylococci: is it increasing and does it matter? J Antimicrob Chemother 67:2547–2559. https://doi.org/10.1093/jac/dks284

    Article  CAS  PubMed  Google Scholar 

  8. Stickler DJ, Thomas B (1980) Antiseptic and antibiotic resistance in Gram-negative bacteria causing urinary tract infection. J. Clin Pathol. 33:288–96. https://www.ncbi.nlm.nih.gov/pubmed/6769972https://doi.org/10.1136/jcp.33.3.288

  9. Stein C, Vincze S, Kipp F, Makarewicz O, Al Dahouk S, Pletz MW (2019) Carbapenem-resistant Klebsiella pneumoniae with low chlorhexidine susceptibility. Lancet Infect Dis 19:932–933. https://doi.org/10.1016/S1473-3099(19)30427-X

    Article  PubMed  Google Scholar 

  10. Wand ME, Bock LJ, Bonney LC, Sutton JM (2017) Mechanisms of increased resistance to chlorhexidine and cross-resistance to colistin following exposure of Klebsiella pneumoniae clinical isolates to chlorhexidine. Antimicrob Agents Chemother 61:1–31. https://doi.org/10.1128/AAC.01162-16

    Article  Google Scholar 

  11. Lister PD, Wolter DJ, Hanson ND (2009) Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev 22:582–610. https://doi.org/10.1128/CMR.00040-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. World Health Organization (2017) WHO publishes list of bacteria for which new antibiotics are urgently needed. https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed. Accessed March 2018

  13. Ostroff RM, Wretlind B, Vasil ML (1989) Mutations in the hemolytic-phospholipase C operon result in decreased virulence of Pseudomonas aeruginosa PAO1 grown under phosphate-limiting conditions. Infect Immun 57:1369–1373

    Article  CAS  Google Scholar 

  14. Wayne, PA (2015) Clinical and Laboratory Standards Institute. M07-A10: methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; Approved Standard—Tenth Edition

  15. Tsuchiya K, Cao Y-Y, Kurokawa M, Ashino K, Yomo T, Ying B-W (2018) A decay effect of the growth rate associated with genome reduction in Escherichia coli. BMC Microbiol 18:101. https://doi.org/10.1186/s12866-018-1242-410.1186/s12866-018-1242-4

    Article  PubMed  PubMed Central  Google Scholar 

  16. Birosova L, Mikulasova M (2009) Development of triclosan and antibiotic resistance in Salmonella enterica serovar Typhimurium. J Med Microbiol. 58:436–41. http://jmm.microbiologyresearch.org/content/journal/jmm/https://doi.org/10.1099/jmm.0.003657-0

  17. Rosche WA, Foster PL (2000) Determining mutation rates in bacterial populations. Methods 20:4–17. https://doi.org/10.1006/meth.1999.0901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lanini S, D’Arezzo S, Puro V, Martini L, Imperi F, Piselli P, et al (2011) Molecular epidemiology of a Pseudomonas aeruginosa hospital outbreak driven by a contaminated disinfectant-soap dispenser. PLoS One. 6. https://doi.org/10.1371/journal.pone.0017064

  19. Clinical and Laboratory Standards Institute (2017) Performance standards for antimicrobial susceptibility testing; Twenty-Seventh Informational Supplement. CLSI Document M100-S27. www.clsi.org

  20. Lamers RP, Cavallari JF, Burrows LL (2013) The efflux inhibitor phenylalanine-arginine beta-naphthylamide (PAβN) permeabilizes the outer membrane of gram-negative bacteria. PLoS ONE 8:1–7. https://doi.org/10.1371/journal.pone.0060666

    Article  CAS  Google Scholar 

  21. Murphy TF, Loeb MR (1989) Isolation of the outer membrane of Branhamella catarrhalis. Microb Pathog 6:159–174. https://doi.org/10.1016/0882-4010(89)90066-1

    Article  CAS  PubMed  Google Scholar 

  22. Mohamed SA (2015) A study of the role of interaction between Moraxella catarrhalis surface antigen and specific host antibody response on the occurance of otitis media. Master thesis, Cairo University

  23. Bradford MM (1976) A rapid and sensitive method for the quantitation microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3

  24. Kristiansen JE, Thomsen VF, Martins A, Viveiros M, Amaral L (2010) Non-antibiotics reverse resistance of bacteria to antibiotics. In Vivo (Brooklyn) 24:751–754 

  25. Thomas L, Maillard J, Lambert RJW, Russell AD (2000) Development of resistance to chlorhexidine diacetate in Pseudomonas aeruginosa and the effect of a ‘ residual ’ concentration. 297–303. https://doi.org/10.1053/jhin.2000.0851

  26. Kampf G (2019) Adaptive bacterial response to low level chlorhexidine exposure and its implications for hand hygiene. Microb. cell (Graz, Austria) 6:307–320. https://doi.org/10.15698/mic2019.07.683

  27. Hashemi MM, Holden BS, Coburn J, Taylor MF, Weber S, Hilton B, et al (2019) Proteomic analysis of resistance of Gram-negative bacteria to chlorhexidine and impacts on susceptibility to colistin , antimicrobial peptides, and ceragenins. 10:1–13. https://doi.org/10.3389/fmicb.2019.00210

  28. Forbes S, Dobson CB, Humphreys GJ, McBain AJ (2014) Transient and sustained bacterial adaptation following repeated sublethal exposure to microbicides and a novel human antimicrobial peptide. Antimicrob Agents Chemother. 58:5809–17. https://www.ncbi.nlm.nih.gov/pubmed/25049246https://doi.org/10.1128/AAC.03364-14

  29. Tattawasart U, Maillard JY, Furr JR, Russell AD (1999) Development of resistance to chlorhexidine diacetate and cetylpyridinium chloride in Pseudomonas stutzeri and changes in antibiotic susceptibility. J Hosp Infect 42:219–229. https://doi.org/10.1053/jhin.1999.0591

    Article  CAS  PubMed  Google Scholar 

  30. Bock LJ, Wand ME, Sutton JM (2016) Varying activity of chlorhexidine-based disinfectants against Klebsiella pneumoniae clinical isolates and adapted strains. J Hosp Infect 93:42–48. https://doi.org/10.1016/j.jhin.2015.12.019

    Article  CAS  PubMed  Google Scholar 

  31. Bhardwaj P, Hans A, Ruikar K, Guan Z, Palmer KL (2017) Reduced chlorhexidine and daptomycin susceptibility in vancomycin-resistant Enterococcus faecium after serial chlorhexidine exposure. Antimicrob. Agents Chemother 62: e01235–17. https://doi.org/10.1128/AAC.01235-17

  32. Doi Y (2019) Treatment options for carbapenem-resistant gram-negative bacterial infections. Clin Infect Dis 69:S565-S575. https://doi.org/10.1093/cid/ciz830

  33. Kampf G (2018) Biocidal agents used for disinfection can enhance antibiotic resistance in gram-negative species. Antibiotics 7:110. https://doi.org/10.3390/antibiotics7040110

  34. Kramer A, Behrens-Baumann W (2002) Antiseptic prophylaxis and therapy in ocular infections: principles, clinical practice and infection control. Karger Medical and Scientific Publishers

  35. Delcour AH (2009) Outer membrane permeability and antibiotic resistance. Biochim Biophys Acta 1794:808–816. https://doi.org/10.1016/j.bbapap.2008.11.005

    Article  CAS  PubMed  Google Scholar 

  36. Denyer SP, Maillard J-Y (2002) Cellular impermeability and uptake of biocides and antibiotics in Gram-negative bacteria. J Appl Microbiol 92(Suppl):35S-45S

    Article  Google Scholar 

  37. Brozel VS, Cloete TE (1994) Resistance of Pseudomonas aeruginosa to isothiazolone. J Appl Bacteriol 76:576–582

    Article  CAS  Google Scholar 

  38. Yamano Y, Nishikawa T, Komatsu Y (1990) Outer membrane proteins responsible for the penetration of beta-lactams and quinolones in Pseudomonas aeruginosa. J Antimicrob Chemother 26:175–184. https://doi.org/10.1093/jac/26.2.175

    Article  CAS  PubMed  Google Scholar 

  39. Alonso A, Campanario E, Martínez JL (1999) Emergence of multidrug-resistant mutants is increased under antibiotic selective pressure in Pseudomonas aeruginosa. Microbiology 145:2857–2862. https://doi.org/10.1099/00221287-145-10-2857

    Article  CAS  PubMed  Google Scholar 

  40. Tabata A, Nagamune H, Maeda T, Murakami K, Miyake Y, Kourai H (2003) Correlation between resistance of Pseudomonas aeruginosa to quaternary ammonium compounds and expression of outer membrane protein OprR 1. Antimicrob. Agents Chemother. 47:2093–9. isi:000183786700005 https://doi.org/10.1128/AAC.47.7.2093

  41. Morita Y, Tomida J, Kawamura Y (2014) Responses of Pseudomonas aeruginosa to antimicrobials. Front Microbiol 4:422. https://doi.org/10.3389/fmicb.2013.00422

    Article  PubMed  PubMed Central  Google Scholar 

  42. Young ML, Bains M, Bell A, Hancock RE (1992) Role of Pseudomonas aeruginosa outer membrane protein OprH in polymyxin and gentamicin resistance: isolation of an OprH-deficient mutant by gene replacement techniques. Antimicrob Agents Chemother 36:2566–2568. https://doi.org/10.1128/aac.36.11.2566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gilbert P, Moore LE (2005) Cationic antiseptics: diversity of action under a common epithet. J Appl Microbiol 99:703–715. https://doi.org/10.1111/j.1365-2672.2005.02664.x

    Article  CAS  PubMed  Google Scholar 

  44. Poole K (2005) Efflux-mediated antimicrobial resistance. J Antimicrob Chemother 56:20–51. https://doi.org/10.1093/jac/dki171

    Article  CAS  PubMed  Google Scholar 

  45. Mombeshora M, Mukanganyama S (2017) Development of an accumulation assay and evaluation of the effects of efflux pump inhibitors on the retention of chlorhexidine digluconate in Pseudomonas aeruginosa and Staphylococcus aureus. BMC Res Notes 10:1–9. https://doi.org/10.1186/s13104-017-2637-2

    Article  CAS  Google Scholar 

  46. Amsalu A, Sapula SA, De Barros Lopes M, Hart BJ, Nguyen AH, Drigo B, et al (2020) Efflux pump-driven antibiotic and biocide cross-resistance in Pseudomonas aeruginosa isolated from different ecological niches: a case study in the development of multidrug resistance in environmental hotspots. Microorganisms. 24;8:1647. https://pubmed.ncbi.nlm.nih.gov/33114277https://doi.org/10.3390/microorganisms8111647

  47. Aeschlimann JR (2003) The role of multidrug efflux pumps in the antibiotic resistance of Pseudomonas aeruginosa and other gram-negative bacteria. Insights from the Society of Infectious Diseases Pharmacists. Pharmacotherapy 23:916–24

    Article  CAS  Google Scholar 

  48. Hocquet D, Muller A, Blanc K, Plésiat P, Talon D, Monnet DL et al (2008) Relationship between antibiotic use and incidence of MexXY-OprM overproducers among clinical isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother 52:1173–1175. https://doi.org/10.1128/AAC.01212-07

  49. Li X-Z, Plésiat P (2016) Antimicrobial drug efflux pumps in Pseudomonas aeruginosa. In: Li X-Z, Elkins CA, Zgurskaya HI, editors. Efflux-mediated antimicrobial resistance in bacteria. 1st ed. Cham: Springer International Publishing. pp. 359–400. https://doi.org/10.1007/978-3-319-39658-3_14

Download references

Acknowledgements

The authors would like to thank Dr. Ahmed Sherif Attia (Cairo University) for providing P. aeruginosa PAO1 strain, Dr. Mohamed Abdel Halim Ramadan (Cairo University) for providing chlorhexidine hydrochloride, and Dr. Shahira Abdel Salam (Cairo University) for her technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, A.S.Y., O.E., and M.T.K.; methodology, M.A.T; formal analysis, M.A.T., A.S.Y., and M.T.K.; writing—original draft preparation, M.A.T.; writing—review and editing, A.S.Y. and M.T.K.; supervision, A.S.Y. and M.T.K. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Mona T. Kashef.

Ethics declarations

Ethics approval

This study was approved by the ethics committee of Faculty of Pharmacy, Cairo University (approval number: MI 1617).

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tag ElDein, M.A., Yassin, A.S., El-Tayeb, O. et al. Chlorhexidine leads to the evolution of antibiotic-resistant Pseudomonas aeruginosa. Eur J Clin Microbiol Infect Dis 40, 2349–2361 (2021). https://doi.org/10.1007/s10096-021-04292-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-021-04292-5

Keywords

Navigation