Skip to main content

Advertisement

Log in

Urinary kynurenine as a biomarker for Parkinson’s disease

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Objective

To examine whether urine kynurenine (KYN) levels were associated with early-stage Parkinson’s disease (PD), as well as the value of urine KYN as a potential biomarker in early-stage PD.

Method

Eighty-two participants including 41 PD patients and 41 healthy controls were enrolled into this study. Urine KYN levels were measured with a KYN enzyme-linked immunoassay kit. In order to explore the correlation between some clinical parameters and urine KYN, the clinical parameters for these participants were recorded. Diagnostic value and clinical relevance of urine KYN were assessed by using receiver operator characteristic (ROC) curve and correlation analysis.

Results

Urine KYN levels were significantly higher in the PD group than in the healthy group (891.95 ± 276.65 pg/ml vs. 640.11 ± 122.37 pg/ml, p = 0.000). The correlations between urine KYN levels and clinical parameters are as follows: Hoehn-Yahr stage (r = 0.676, p = 0.000), disease duration (r = 0.772, p = 0.000), Mini-Mental State Examination scores (r = −0.434, p = 0.005). There was no statistically significant correlation between urine KYN with age, low-density cholesterol (LDL), triglycerides (TG), cholesterol (TC), homocysteine (HCY), uric acid (UA), and glomerular filtration rate (GFR). The ROC analysis showed that urine KYN optimal cutoff value of 751.88 pg/ml had a sensitivity of 65.9% and a specificity of 90.2% for distinguishing between PD and controls, with an area under the curve (AUC) of 0.776.

Conclusion

Urine KYN were significantly associated with PD severity and mild cognitive impairment. Urine KYN may be a new biomarker for early-stage PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Halbach OB, Schober A, Krieglstein K (2004) Genes, proteins, and neurotoxins involved in Parkinson’s disease. Prog Neurobiol 73(3):151–177. https://doi.org/10.1016/j.pneurobio.2004.05.002

    Article  CAS  Google Scholar 

  2. Yazar T, Yazar HO, Zayimoğlu E, Çankaya S (2018) Incidence of sarcopenia and dynapenia according to stage in patients with idiopathic Parkinson’s disease. Neurol Sci 39:1415–1421. https://doi.org/10.1007/s10072-018-3439-6

    Article  PubMed  Google Scholar 

  3. Elbaz A, Carcaillon L, Kab S, Moisan F (2016) Epidemiology of Parkinson’s disease. Rev Neurol 172:14–26. https://doi.org/10.1017/S0317167100046321

    Article  CAS  PubMed  Google Scholar 

  4. Xu XM, Dong MX, Feng X, Liu Y, Pan JX, Jia SY, Cao D, Wei YD (2018) Decreased serum proNGF concentration in patients with Parkinson’s disease. Neurol Sci 39:91–96. https://doi.org/10.1007/s10072-017-3157-5

    Article  PubMed  Google Scholar 

  5. Dexter DT, Jenner P (2013) Parkinson disease: from pathology to molecular disease mechanisms. Free Radical Bio Med 62(5):132–144. https://doi.org/10.1016/j.freeradbiomed.2013.01.018

    Article  CAS  Google Scholar 

  6. Lopiano L, Modugno N, Marano P, Sensi M, Meco G, Cannas A, Gusmaroli G, Tamma F, Mancini F, Quatrale R, Costanzo AM, Gualberti G, Melzi G, di Luzio Paparatti U, Antonini A (2016) Motor outcomes in patients with advanced Parkinson’s disease treated with levodopa/carbidopa intestinal gel in Italy: an interim analysis from the GREENFIELD observational study. Neurol Sci 37:1785–1792. https://doi.org/10.1007/s10072-016-2664-0

    Article  PubMed  PubMed Central  Google Scholar 

  7. Debapriya, Garabadu, Nidhi (2019) Mitochondrial metabolism: a common link between neuroinflammation and neurodegeneration. Behav Pharmacol 30(8):642–652

  8. Zhong RX, Qin YJ, Chen ZY, Zhang JT, Zhao SZ et al (2019) Progress in pathogenesis and early diagnosis of Parkinson’s disease. Clin Med 35(3):276–280. https://doi.org/10.3760/cma.j.issn.1008-6315.2019.03.019

    Article  Google Scholar 

  9. Kalia LV, Lang AE (2015) Parkinson’s disease. Lancet 386:896–912. https://doi.org/10.1016/S0140-6736(14)61393-3

    Article  CAS  PubMed  Google Scholar 

  10. Tan L, Yu JT, Tan L (2012) The kynurenine pathway in neurodegenerative diseases: mechanistic and therapeutic considerations. J Neurol Sci 323:1–2. https://doi.org/10.1016/j.jns.2012.08.005

    Article  CAS  PubMed  Google Scholar 

  11. Widner B, Leblhuber F, Fuchs D (2002) Increased neopterin production and tryptophan degradation in advanced Parkinson’s disease. J Neural Transm 109(2):181–189. https://doi.org/10.1007/s007020200014

    Article  CAS  PubMed  Google Scholar 

  12. Tang YM, Zhang FF, Liu Y, Chang DD, Ren YP (2011) Significance of kynurenine, kynurenic acid and tryptophan in patients with Parkinson’s disease. Guangdong Med J 32(13):1678–1681. https://doi.org/10.3969/j.issn.1001-9448.2011.13.013

    Article  CAS  Google Scholar 

  13. Schwarcz R, Stone TW (2016) The kynurenine pathway and the brain: challenges, controversies and promises. Neuropharmacology 112:234–247. https://doi.org/10.1016/j.neuropharm.2016.08.003

    Article  CAS  Google Scholar 

  14. Maximilian TA, Lilly S, Robert S, Michel G, Sophie E et al (2018) Importance of kynurenine 3-monooxygenase for spontaneous firing and pharmacological responses of midbrain dopamine neurons: relevance for schizophrenia. Neuropharmacology 138:130–139. https://doi.org/10.1016/j.neuropharm.2018.06.003

    Article  CAS  Google Scholar 

  15. Rossi F, Miggiano R, Ferraris D, Rizzi M (2019) The synthesis of kynurenic acid in mammals: an updated kynurenine aminotransferase structural KATalogue. Front Mol Biosci 6:7. https://doi.org/10.3389/fmolb.2019.00007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Albuquerque EX, Schwarcz R (2013) Kynurenic acid as an antagonist of α7 nicotinic acetylcholine receptors in the brain: facts and challenges. Biochem Pharmacol 85(8):1027–1032. https://doi.org/10.1016/j.bcp.2012.12.014

    Article  CAS  PubMed  Google Scholar 

  17. Linderholm KR, Alm MT, Larsson MK, Olsson SK, Goiny M, Hajos M, Erhardt S, Engberg G (2015) Inhibition of kynurenine aminotransferase II reduces activity of midbrain dopamine neurons. Neuropharmacology 102:42–47. https://doi.org/10.1016/j.neuropharm.2015.10.028

    Article  CAS  PubMed  Google Scholar 

  18. Ramos-Chávez LA, Lugo HR, González ED, Pineda B, Ríos C et al (2018) Relevance of alternative routes of kynurenic acid production in the brain. Oxidative Med Cell Longev 2018:1–14. https://doi.org/10.1155/2018/5272741

    Article  CAS  Google Scholar 

  19. Katalin S, Szabó E, Vécsei L (2018) Mitochondria, oxidative stress and the kynurenine system, with a focus on ageing and neuroprotection. Molecules 23(1):191. https://doi.org/10.3390/molecules23010191

    Article  CAS  Google Scholar 

  20. Guillemin GJ (2012) Quinolinic acid, the inescapable neurotoxin. FEBS J 279(8):1356–1365. https://doi.org/10.1111/j.1742-4658.2012.08485.x

    Article  CAS  PubMed  Google Scholar 

  21. Gulaj E, Pawlak K, Bien B, Pawlak D (2010) Kynurenine and its metabolites in Alzheimer’s disease patients. Advances in Medical Sciences 55(2):204–211. https://doi.org/10.2478/v10039-010-0023-6

    Article  CAS  PubMed  Google Scholar 

  22. Capuron L, Miller AH (2011) Immune system to brain signaling: neuropsychopharmacological implications. Pharmacol Ther 130:226–238. https://doi.org/10.1016/j.pharmthera.2011.01.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hartai Z, Klivenyi P, Janaky T, Penke B, Dux L, Vecsei L (2005) Kynurenine metabolism in plasma and in red blood cells in Parkinson’s disease. J Neurol Sci 239(1):31–35. https://doi.org/10.1016/j.jns.2005.07.006

    Article  CAS  PubMed  Google Scholar 

  24. Zadori D, Klivényi P, Plangár I, Toldi J, Vécsei L (2011) Endogenous neuroprotection in chronic neurodegenerative disorders: with particular regard to the kynurenines. Cell Mol Med 15:701–717. https://doi.org/10.1111/j.1582-4934.2010.01237.x

    Article  CAS  Google Scholar 

  25. Lim CK, Fernández-Gomez FJ, Braidy N, Estrada C, Costa C, Costa S, Bessede A, Fernandez-Villalba E, Zinger A, Herrero MT, Guillemin GJ (2016) Involvement of the kynurenine pathway in the pathogenesis of Parkinson’s disease. Prog Neurobiol 155:76–95. https://doi.org/10.1016/j.pneurobio.2015.12.009

    Article  CAS  PubMed  Google Scholar 

  26. Chess AC, Simoni MK, Alling TE, Bucci DJ (2007) Elevations of endogenous kynurenic acid produce spatial working memory deficits. Schizophren Bull 33:797–804. https://doi.org/10.1093/schbul/sbl033

    Article  Google Scholar 

  27. Young S, Koo H, Kim et al (2018) Indoleamine 2,3-dioxygenase-dependent neurotoxic kynurenine metabolism contributes to poststroke depression induced in mice by ischemic stroke along with spatial restraint stress. Oxidative Medicine & Cellular Longevity 2018:241384–241315. https://doi.org/10.1155/2018/2413841

    Article  CAS  Google Scholar 

  28. Ilzecka J, Kocki T, Stelmasiak Z, Turski WA (2003) Endogenous protectant kynurenic acid in amyotrophic lateral sclerosis. Acta Neurol Scand 107:412–418. https://doi.org/10.1034/j.1600-0404.2003.00076.x

    Article  CAS  PubMed  Google Scholar 

  29. Beal MF, Matson WR, Storey E, Milbury P, Ryan EA et al (1992) Kynurenic acid concentrations are reduced in Huntington’s disease cerebral cortex. J Neurol Sci 108(1992):80–87. https://doi.org/10.1016/0022-510X(92)90191-M

    Article  CAS  PubMed  Google Scholar 

  30. Hartai Z, Klivenyi P, Janaky T, Penke B, Vecsei L (2005) Kynurenine metabolism in multiple sclerosis. Acta Neurol Scand 112(2):93–96. https://doi.org/10.1111/j.1600-0404.2005.00442.x

    Article  CAS  PubMed  Google Scholar 

  31. Rejdak K, Bartosik-Psujek H, Dobosz B, Kocki T, Grieb P, Giovannoni G., Turski W.A., Stelmasiak Z. (2002) Decreased level of kynurenic acid in cerebrospinal fluid of relapsing-onset multiple sclerosis patients. Neurosci Lett 331(1):0–65. https://doi.org/10.1016/s0304-3940(02)00710-3, 63

  32. Rejdak K, Petzold A, Kocki T, Kurzepa J, Grieb P, Turski WA, Stelmasiak Z (2007) Astrocytic activation in relation to inflammatory markers during clinical exacerbation of relapsing-remitting multiple sclerosis. J Neural Transm 114(8):1011–1015. https://doi.org/10.1007/s00702-007-0667-y

    Article  CAS  PubMed  Google Scholar 

  33. Havelund JF, Andersen AD, Binzer M, Blaabjerg M, Heegaard NHH, Stenager E, Faergeman NJ, Gramsbergen JB (2017) Changes in kynurenine pathway metabolism in Parkinson patients with L-DOPA-induced dyskinesia. J Neurochem 142:745–766. https://doi.org/10.1111/jnc.14104

    Article  CAS  Google Scholar 

  34. Cheng ML, Chang KH, Wu YR, Chen CM (2016) Metabolic disturbances in plasma as biomarkers for Huntington disease. J NutrBiochem 31:38–44. https://doi.org/10.1016/j.jnutbio.2015.12.001

    Article  CAS  Google Scholar 

  35. Lewitt PA, Li J, Lu M, Beach TG, Adler CH et al (2013) 3-hydroxykynurenine and other Parkinson’s disease biomarkers discovered by metabolomic analysis. Mov Disord 28(12):1653–1660. https://doi.org/10.1002/mds.25555

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by National Natural Science Foundation of China (81400957), and the Medical and Health Technology Development Project of Shandong (2016WSA10008).

Author information

Authors and Affiliations

Authors

Contributions

Putting forward this idea: Yong-peng Yu

Project administration: Yong-peng Yu

Data curation and methodology: Jia-he Bai and Ya-li Zheng

Software and writing, review, and editing: Jia-he Bai and Yong-peng Yu

Corresponding author

Correspondence to Yong-peng Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was approved by the institutional Ethics Board Committee of the Weihai Central Hospital. All participants provided written informed consent to participate in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, Jh., Zheng, Yl. & Yu, Yp. Urinary kynurenine as a biomarker for Parkinson’s disease. Neurol Sci 42, 697–703 (2021). https://doi.org/10.1007/s10072-020-04589-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-020-04589-x

Keywords

Navigation