Skip to main content

Advertisement

Log in

Evaluation of cortical thickness and brain volume on 3 Tesla magnetic resonance imaging in children with frontal lobe epilepsy

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Background

Frontal lobe epilepsy (FLE) is the most common epilepsy syndrome in the pediatric population; however, brain magnetic resonance imaging (MRI) of the children with FLE is frequently normal. We use both cortical thickness and brain volume measurements to report on cortical changes in children with FLE. Our aim was to determine cortical thickness and brain volume changes on 3 Tesla MRI of children with FLE and normal brain magnetic resonance imaging.

Methods

Twenty-seven children with FLE and 27 healthy controls received brain magnetic resonance imaging. Cortical thickness and regional brain volumes were assessed using three-dimensional volumetric T1-weighted imaging and patients were compared with controls.

Results

In children with FLE, statistically significant (p < 0.05) cortical thinning were found in the bilateral middle frontal gyrus, bilateral occipitotemporal and medial lingual gyrus, left subcallosal gyrus, left short insular gyrus, and right long insular gyrus. Statistically significant volume reductions in right and left hemisphere cortical white matter, total cortical white matter, bilateral thalamus, bilateral putamen, bilateral globus pallidus, right caudate nucleus, brain stem, and right cerebellar cortex were found.

Conclusion

Cortical thinning in frontal and extra-frontal lobes and volume loss in a variety of brain regions were found in children with FLE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lawson JA, Cook MJ, Vogrin S, Litewka L, Strong D, Bleasel AF, Bye AM (2002) Clinical, EEG, and quantitative MRI differences in pediatric frontal and temporal lobe epilepsy. Neurology 58:723–729

    Article  CAS  Google Scholar 

  2. Cascino GD, Jack CR Jr, Parisi JE, Marsh WR, Kelly PJ, Sharbrough FW, Hirschorn KA, Trenerry MR (1992) MRI in the presurgical evaluation of patients with frontal lobe epilepsy and children with temporal lobe epilepsy: pathologic correlation and prognostic importance. Epilepsy Res 11:51–59

    Article  CAS  Google Scholar 

  3. Widjaja E, Mahmoodabadi SZ, Snead OC 3rd, Almehdar A, Smith ML (2011) Widespread cortical thinning in children with frontal lobe epilepsy. Epilepsia 52:1685–1691

    Article  Google Scholar 

  4. Widjaja E, Kis A, Go C, Snead OC 3rd, Smith ML (2014) Bilateral white matter abnormality in children with frontal lobe epilepsy. Epilepsy Res 108:289–294

    Article  Google Scholar 

  5. Braakman HMH, Vaessen MJ, Jansen JFA, Debeij-van Hall MHJA, de Louw A, Hofman PAM, Les JSH, Aldenkamp AP, Backes WH (2014) Pediatric frontal lobe epilepsy: white matter abnormalities and cognitive impairment. Acta Neurol Scand 129:252–262

    Article  CAS  Google Scholar 

  6. Saute R, Dabbs K, Jones JE, Jackson DC, Seidenberg M, Hermann BP (2014) Brain morphology in children with epilepsy and ADHD. PLoS One 9:e95269

    Article  Google Scholar 

  7. Mutlu A (2018) Association between epilepsy and headache. Neurol Sci 39:2129–2134

    Article  Google Scholar 

  8. Lorenzo NY, Parisi JE, Cascino GD, Jack CR Jr, Marsh WR, Hirschorn KA (1995) Intractable frontal lobe epilepsy: pathological and MRI features. Epilepsy Res 20:171–178

    Article  CAS  Google Scholar 

  9. Jobst BC, Siegel AM, Thadani VM, Roberts DW, Rhodes HC, Williamson PD (2000) Intractable seizures of frontal lobe origin: clinical characteristics, localizing signs, and results of surgery. Epilepsia 41:1139–1152

    Article  CAS  Google Scholar 

  10. Fischl B, Salat DH, van der Kouwe AJ, Makris N, Ségonne F, Quinn BT, Dale AM (2004) Sequence-independent segmentation of magnetic resonance images. Neuroimage 23:69–84

    Article  Google Scholar 

  11. Fischl B, Sereno MI, Tootell RB, Dale AM (1999) High resolution intersubject averaging and a coordinate system for the cortical surface. Hum Brain Mapp 8:272–284

    Article  CAS  Google Scholar 

  12. Fischl B, Serono MI, Dale AM (1999) Cortical surface-based analysis II: inflation, flattening, and a surface-based coordinate system. Neuroimage 9:195–207

    Article  CAS  Google Scholar 

  13. Fischl B, Dale AM (2000) Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci U S A 97:11050–11055

    Article  CAS  Google Scholar 

  14. Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 9:179–194

    Article  CAS  Google Scholar 

  15. Fischl B, van der Kouwe A, Destrieux C, Halgren E, Ségonne F, Salat DH, Busa E, Seidman LJ, Goldstein J, Kennedy D, Caviness V, Makris N, Rosen B, Dale AM (2004) Automatically parcellating the human cerebral cortex. Cereb Cortex 14:11–22

    Article  Google Scholar 

  16. Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, Maguire RP, Hyman BT, Albert MS, Killiany RJ (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31:968–980

    Article  Google Scholar 

  17. Widjaja E, Zarei Mahmoodabadi S, Go C, Raybaud C, Chuang S, Snead OC, Smith ML (2012) Reduced cortical thickness in children with new-onset seizures. AJNR Am J Neuroradiol 33:673–677

    Article  CAS  Google Scholar 

  18. Quesney LF, Constain M, Rasmussen T, Stefan H, Olivier A (1992) How large are frontal lobe epileptogenic zones? EEG, ECoG, and SEEG evidence. Adv Neurol 57:311–323

    CAS  PubMed  Google Scholar 

  19. da Silva EA, Chugani DC, Muzik O, Chugani HT (1997) Identification of frontal lobe epileptic foci in children using positron emission tomography. Epilepsia 38:1198–1208

    Article  Google Scholar 

  20. Mueller SG, Laxer KD, Barakos J, Cheong I, Garcia P, Weiner MW (2009) Widespread neocortical abnormalities in temporal lobe epilepsy with and without mesial sclerosis. Neuroimage 46:353–359

    Article  CAS  Google Scholar 

  21. Vaessen MJ, Jansen JF, Braakman HM, Hofman PA, De Louw A, Aldenkamp AP, Backes WH (2014) Functional and structural network impairment in childhood frontal lobe epilepsy. PLoS One 9(3):e90068

    Article  Google Scholar 

  22. Enteno M, Vollmar C, Stretton J, Symms MR, Thompson PJ, Richardson MP, O’Muircheartaigh J, Duncan JS, Koepp MJ (2014) Structural changes in the temporal lobe and piriform cortex in frontal lobe epilepsy. Epilepsy Res 108:978–981

    Article  Google Scholar 

  23. Eriksson SH, Malmgren K, Nordborg C (2005) Microdysgenesis in epilepsy. Acta Neurol Scand 111:279–290

    Article  CAS  Google Scholar 

  24. Tondelli M, Vaudano AE, Ruggieri A, Meletti S (2016) Cortical and subcortical brain alterations in juvenile absence epilepsy. Neuroimage Clin 12:306–311

    Article  Google Scholar 

  25. Hermann BP, Dabbs K, Becker T, Jones JE, Myers Y, Gutierrez A, Wendt G, Koehn MA, Sheth R, Seidenberg M (2010) Brain development in children with new onset epilepsy: a prospective controlled cohort investigation. Epilepsia 51:2038–2046

    Article  Google Scholar 

  26. Pulsipher DT, Dabbs K, Tuchsherer V, Sheth RD, Koehn MA, Hermann BP, Seidenberg M (2011) Thalamofrontal neurodevelopment in new-onset pediatric idiopathic generalized epilepsy. Neurology 76:28–33

    Article  CAS  Google Scholar 

  27. Jones JE, Jackson DC, Chambers KL, Dabbs K, Hsu DA, Stafstrom CE, Seidenberg M, Hermann BP (2015) Children with epilepsy and anxiety: subcortical and cortical differences. Epilepsia 56:283–290

    Article  Google Scholar 

  28. Lin JJ, Salamon N, Lee AD, Dutton RA, Geaga JA, Hayashi KM, Luders E, Toga AW, Engel J Jr, Thompson PM (2007) Reduced neocortical thickness and complexity mapped in mesial temporal lobe epilepsy with hippocampal sclerosis. Cereb Cortex 17:2007–2018

    Article  Google Scholar 

  29. McDonald CR, Hagler DJ Jr, Ahmadi ME, Tecoma E, Iragui V, Gharapetian L, Dale AM, Halgren E (2008) Regional neocortical thinning in mesial temporal lobe epilepsy. Epilepsia 49:794–803

    Article  Google Scholar 

  30. Phal PM, Usmanov A, Nesbit GM, Anderson JC, Spencer D, Wang P, Helwig JA, Roberts C, Hamilton BE (2008) Qualitative comparison of 3-T and 1.5-T MRI in the evaluation of epilepsy. AJR Am J Roentgenol 191:890–895

    Article  Google Scholar 

  31. Zijlmans M, de Kort GA, Witkamp TD, Huiskamp GM, Seppenwoolde JH, van Huffelen AC, Leijten FS (2009) 3T versus 1.5T phased-array MRI in the presurgical work-up of patients with partial epilepsy of uncertain focus. J Magn Reson Imaging 30:256–262

    Article  Google Scholar 

  32. Abdel Razek AAK, Talaat M, El-Serougy L, Gaballa G, Abdelsalam M (2019) Clinical applications of arterial spin labeling in brain tumors. J Comput Assist Tomogr 43:525–532

    Article  Google Scholar 

  33. Razek AAKA, El-Serougy L, Abdelsalam M, Gaballa G, Talaat M (2018) Differentiation of residual/recurrent gliomas from postradiation necrosis with arterial spin labeling and diffusion tensor magnetic resonance imaging-derived metrics. Neuroradiology 60:169–177

    Article  Google Scholar 

  34. El-mewafy Z, Abdel Razek AAAK, El-Eshmawy M, Abo El-Eneen N, EL-Biaomy A (2018) MR spectroscopy of the frontal region in patients with metabolic syndrome: correlation with anthropometric measurement. Pol J Radiol 83:e215–e219

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feride Kural Rahatli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of our institutional review board (IRB) after its approval and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Our IRB determined that patient approval and informed consent were not required because of retrospectively reviewing images and records.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahatli, F.K., Sezer, T., Has, A.C. et al. Evaluation of cortical thickness and brain volume on 3 Tesla magnetic resonance imaging in children with frontal lobe epilepsy. Neurol Sci 41, 825–833 (2020). https://doi.org/10.1007/s10072-019-04135-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-019-04135-4

Keywords

Navigation