Skip to main content
Log in

Attenuation of vincristine-induced neuropathy by synthetic cyclohexenone-functionalized derivative in mice model

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Vincristine (VCR) is a well-known anticancer drug which frequently induced painful neuropathy and impairs the quality of life of patients. The present study was designed to investigate the alleviative potential of a novel cyclohexenone derivative (CHD), i.e., ethyl 6-(4-methoxyphenyl)-2-oxo-4-phenylcyclohexe-3-enecarboxylate, against VCR-induced neuropathic pain in mice model. VCR was administered intraperitoneally for 10 days in two cycles to induce neuropathic pain. Static and dynamic mechanical allodynia was evaluated using von Frey hair filaments and cotton buds, respectively. Paw thermal hyperalgesia was determined through a hot plate analgesiometer. The tail cold immersion hyperalgesia and paw cold allodynia were determined by available standard protocols. The formalin nociception was induced via subplantar injection of formalin. The antioxidant potential was evaluated via 2,2-diphenyl-1-picrylhydrazyl free radical scavenging activity. The outcome of this study revealed that CHD (30–45 mg/kg) and gabapentin (75 mg/kg) significantly enhanced the paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) in static and dynamic allodynia, respectively, and increased the PWL in thermal hyperalgesia and tail withdrawal latency (TWL) as compared to the VCR-treated group. CHD significantly augmented the paw withdrawal duration (PWD) in paw cold allodynia, while the same compound only increased the paw elevation and paw licking in the delayed phase of formalin nociception. Moreover, CHD significantly inhibited the DPPH free radical scavenging action (IC50 = 56), butylated hydroxytoluene (BHT) (IC50 = 39), and ascorbic acid (IC50 = 2.93). In conclusion, CHD exhibited a profile of potential attenuative effect against the VCR-induced neuropathic pain which might be attributed to its possible antinociceptive and antioxidant effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Merskey H (1986) Classification of chronic pain: description of chronic pain syndromes and definitions of pain terms. Pain 3:216–221

    Google Scholar 

  2. Rasmussen PV, Sindrup SH, Jensen TS, Bach FW (2004) Symptoms and signs in patients with suspected neuropathic pain. Pain 110:461–469

    Article  PubMed  Google Scholar 

  3. Woolf CJ, Mannion RJ (1999) Neuropathic pain: aetiology, symptoms, mechanisms, and management. Lancet 353:1959–1964. https://doi.org/10.1016/S0140-6736(99)01307-0

    Article  CAS  PubMed  Google Scholar 

  4. Poupon P, Monlun M, Alexandre L, Blanco L, Rigalleau V (2018) Sudomotor function in diabetic peripheral artery disease: a role for diabetic neuropathy? Neurol Sci 39:191–192. https://doi.org/10.1007/s10072-017-3103-6

    Article  PubMed  Google Scholar 

  5. Cazzato D, Dalla Bella E, Saveri P, Taroni F, Marucci G, Lauria G (2019) Late-onset and fast progressive neuropathy and cardiomyopathy in Val32Ala transthyretin gene mutation. Neurol Sci:1–3. https://doi.org/10.1007/s10072-019-3716-z

  6. Ali G, Subhan F, Abbas M, Zeb J, Shahid M, Sewell RD (2015) A streptozotocin-induced diabetic neuropathic pain model for static or dynamic mechanical allodynia and vulvodynia: validation using topical and systemic gabapentin. Naunyn Schmiedeberg's Arch Pharmacol 388:1129–1140. https://doi.org/10.1007/s00210-015-1145-y

    Article  CAS  Google Scholar 

  7. Gutiérrez-Gutiérrez G, Sereno M, Miralles A, Casado-Sáenz E, Gutiérrez-Rivas E (2010) Chemotherapy-induced peripheral neuropathy: clinical features, diagnosis, prevention and treatment strategies. Clin Transl Oncol 12:81–91. https://doi.org/10.1007/S12094-010-0474-z

    Article  PubMed  Google Scholar 

  8. Ito T, Mochida A, Saito K, Nishi K, Sasaki S, Hisada T, Morinari H, Nakahara K, Tahara M, Masuda S (2002) An autopsy case of pulmonary and central nervous system metastatic osteosarcoma treated with thirty-six courses of chemotherapy over four years. Nihon Kokyuki Gakkai zasshi 40:71–76

    PubMed  Google Scholar 

  9. Bromberg M (2000) Peripheral neurotoxic disorders. Clin Neurobehav Toxicol 18:681–689

    CAS  Google Scholar 

  10. Tanner KD, Levine JD, Topp KS (1998) Microtubule disorientation and axonal swelling in unmyelinated sensory axons during vincristine-induced painful neuropathy in rat. J Comp Neurol 395:481–492. https://doi.org/10.1002/(SICI)1096-9861(19980615)395:4<481::AID-CNE5>3.0.CO;2-Y

    Article  CAS  PubMed  Google Scholar 

  11. Tanner KD, Reichling DB, Levine JD (1998) Nociceptor hyper-responsiveness during vincristine-induced painful peripheral neuropathy in the rat. J Neurosci 18:6480–6491. https://doi.org/10.1523/JNEUROSCI.18-16-06480.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Topp KS, Tanner KD, Levine JD (2000) Damage to the cytoskeleton of large diameter sensory neurons and myelinated axons in vincristine-induced painful peripheral neuropathy in the rat. J Comp Neurol 424:563–576. https://doi.org/10.1002/1096-9861(20000904)424:4<563::AID-CNE1>3.0.CO;2-U

    Article  CAS  PubMed  Google Scholar 

  13. Aley K, Reichling D, Levine J (1996) Vincristine hyperalgesia in the rat: a model of painful vincristine neuropathy in humans. Neuroscience 73:259–265. https://doi.org/10.1016/0306-4522(96)00020-6

    Article  CAS  PubMed  Google Scholar 

  14. Nozaki-Taguchi N, Chaplan SR, Higuera ES, Ajakwe RC, Yaksh TL (2001) Vincristine-induced allodynia in the rat. Pain 93:69–76. https://doi.org/10.1016/S0304-3959(01)00294-9

    Article  CAS  PubMed  Google Scholar 

  15. Authier N, Gillet J-P, Fialip J, Eschalier A, Coudore F (2003) A new animal model of vincristine-induced nociceptive peripheral neuropathy. Neurotoxicology 24:797–805. https://doi.org/10.1016/S0161-813X(03)00043-3

    Article  CAS  PubMed  Google Scholar 

  16. Jaggi AS, Singh N (2010) Differential effect of spironolactone in chronic constriction injury and vincristine-induced neuropathic pain in rats. Eur J Pharmacol 648:102–109. https://doi.org/10.1016/j.ejphar.2010.08.050

    Article  CAS  PubMed  Google Scholar 

  17. Muthuraman A, Jaggi AS, Singh N, Singh D (2008) Ameliorative effects of amiloride and pralidoxime in chronic constriction injury and vincristine induced painful neuropathy in rats. Eur J Pharmacol 587:104–111. https://doi.org/10.1016/j.ejphar.2008.03.042

    Article  CAS  PubMed  Google Scholar 

  18. Dworkin RH, O’connor AB, Audette J, Baron R, Gourlay GK, Haanpää ML, Kent JL, Krane EJ, LeBel AA, Levy RM (2010) Recommendations for the pharmacological management of neuropathic pain: an overview and literature update. In: Mayo Clin Proc. Elsevier, pp S3-S14. https://doi.org/10.4065/mcp.2009.0649

  19. Lee JNP (2010) Improving the management of neuropathic pain. Practioner 254:27–30

    Google Scholar 

  20. Wiffen PJ, Collins S, McQuay HJ, Carroll D, Jadad A, Moore RA (2010) WITHDRAWN. Anticonvulsant drugs for acute and chronic pain. Cochrane Database Syst Rev 1:CD001133–CD001133. https://doi.org/10.1002/14651858.CD001133.pub3

    Article  Google Scholar 

  21. Wamboldt C, Kapustin J (2006) Evidence-based treatment of diabetic peripheral neuropathy. J Nurse Pract 2:370–378. https://doi.org/10.1016/j.nurpra.2006.04.015

    Article  Google Scholar 

  22. Senguttuvan S, Nagarajan S (2010) Synthesis of 2-amino-5-aryl-5,6-dihydro-7-(naphthalen-2-yl)quinazolin-4-ols. Int J Chem 2:108

    Article  CAS  Google Scholar 

  23. Gopalakrishnan M, Thanusu J, Kanagarajan V (2008) Synthesis and characterization of 4,6-diaryl-4,5-dihydro-2H-indazol-3-ols and 4,6-diaryl-2-phenyl-4,5-dihydro-2H-indazol-3-ols—a new series of fused indazole derivatives. Chem Heterocycl Comp 44:950–955. https://doi.org/10.1007/s10593-008-0137-y

    Article  CAS  Google Scholar 

  24. Johnson T, Pultar F, Menke F, Lautens M (2016) Palladium-catalyzed α-arylation of vinylogous esters for the synthesis of γ, γ-disubstituted cyclohexenones. Org Lett 18:6488–6491. https://doi.org/10.1021/acs.orglett.6b03394

    Article  CAS  PubMed  Google Scholar 

  25. Liu D, Yu W, Li J, Pang C, Zhao L (2013) Novel 2-(E)-substituted benzylidene-6-(N-substituted aminomethyl) cyclohexanones and cyclohexanols as analgesic and anti-inflammatory agents. Med Chem Res 22:3779–3786. https://doi.org/10.1007/s00044-012-0362-x

    Article  CAS  Google Scholar 

  26. Wang Y, Yu C, Pan Y, Li J, Zhang Y, Ye F, Yang S, Zhang H, Li X, Liang G (2011) A novel compound C12 inhibits inflammatory cytokine production and protects from inflammatory injury in vivo. PLoS One 6:e24377. https://doi.org/10.1371/journal.pone.0024377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sheorey R, Thangathiruppathy A, Alagarsamy V (2016) Synthesis and pharmacological evaluation of 3-propyl-2-substitutedamino-3H-quinazolin-4-ones as analgesic and anti-inflammatory agents. J Heterocycl Chem 53:1371–1377. https://doi.org/10.1002/jhet.1973

    Article  CAS  Google Scholar 

  28. Lednicer D, Von Voigtlander PF, Emmert DE (1981) 4-Aryl-4-aminocyclohexanones and their derivatives, a novel class of analgesics. 3. M-hydroxyphenyl derivatives. J Med Chem 24:341–346. https://doi.org/10.1021/jm00135a019

    Article  CAS  PubMed  Google Scholar 

  29. Lednicer D, VonVoigtlander PF, Emmert DE (1981) 4-Amino-4-arylcyclohexanones and their derivatives: a novel class of analgesics. 2. Modification of the carbonyl function. J Med Chem 24:404–408. https://doi.org/10.1021/jm00136a010

    Article  CAS  PubMed  Google Scholar 

  30. Ming-Tatt L, Khalivulla SI, Akhtar MN, Lajis N, Perimal EK, Akira A, Ali DI, Sulaiman MR (2013) Anti-hyperalgesic effect of a benzilidine-cyclohexanone analogue on a mouse model of chronic constriction injury-induced neuropathic pain: participation of the κ-opioid receptor and KATP. Pharmacol Biochem Behav 114:58–63. https://doi.org/10.1016/j.pbb.2013.10.019

    Article  CAS  PubMed  Google Scholar 

  31. Ahmadi A, Khalili M, Hajikhani R, Hosseini H, Afshin N, Nahri-Niknafs B (2012) Synthesis and study the analgesic effects of new analogues of ketamine on female Wistar rats. Med Chem 8:246–251. https://doi.org/10.2174/157340612800493683

    Article  CAS  PubMed  Google Scholar 

  32. Ming-Tatt L, Khalivulla SI, Akhtar MN, Mohamad AS, Perimal EK, Khalid MH, Akira A, Lajis N, Israf DA, Sulaiman MR (2012) Antinociceptive activity of a synthetic curcuminoid analogue, 2,6-bis-(4-hydroxy-3-methoxybenzylidene) cyclohexanone, on nociception-induced models in mice. Basic Clin Pharmacol Toxicol 110:275–282. https://doi.org/10.1111/j.1742-7843.2011.00804.x

    Article  CAS  PubMed  Google Scholar 

  33. Weng H-R, Cordella J, Dougherty P (2003) Changes in sensory processing in the spinal dorsal horn accompany vincristine-induced hyperalgesia and allodynia. Pain 103:131–138

    Article  CAS  PubMed  Google Scholar 

  34. Siau C, Bennett GJ (2006) Dysregulation of cellular calcium homeostasis in chemotherapy-evoked painful peripheral neuropathy. Anesth Analg 102:1485–1490. https://doi.org/10.1213/01.ane.0000204318.35194.ed

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chaplan S, Bach F, Pogrel J, Chung J, Yaksh T (1994) Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 53:55–63

    Article  CAS  PubMed  Google Scholar 

  36. Field MJ, McCleary S, Hughes J, Singh L (1999) Gabapentin and pregabalin, but not morphine and amitriptyline, block both static and dynamic components of mechanical allodynia induced by streptozocin in the rat. Pain 80:391–398

    Article  CAS  PubMed  Google Scholar 

  37. Nakazato-Imasato E, Tanimoto-Mori S, Kurebayashi Y (2009) Effect of mexiletine on dynamic allodynia induced by chronic constriction injury of the sciatic nerve in rats. J Vet Med Sci 71:991–994

    Article  CAS  PubMed  Google Scholar 

  38. Ahmad N, Subhan F, Islam NU, Shahid M, Rahman FU, Sewell RD (2017) Gabapentin and its salicylaldehyde derivative alleviate allodynia and hypoalgesia in a cisplatin-induced neuropathic pain model. Eur J Pharmacol 814:302–312. https://doi.org/10.1016/j.ejphar.2017.08.040

    Article  CAS  PubMed  Google Scholar 

  39. Necker R, Hellon R (1977) Noxious thermal input from the rat tail: modulation by descending inhibitory influences. Pain 4:231–242

    Article  Google Scholar 

  40. Decosterd I, Woolf CJ (2000) Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain 87:149–158

    Article  CAS  PubMed  Google Scholar 

  41. Geisler S, Doan RA, Strickland A, Huang X, Milbrandt J, DiAntonio A (2016) Prevention of vincristine-induced peripheral neuropathy by genetic deletion of SARM1 in mice. Brain 139:3092–3108. https://doi.org/10.1093/brain/aww251

    Article  PubMed  PubMed Central  Google Scholar 

  42. Abad ANA, Nouri MHK, Tavakkoli F (2011) Effect of Salvia officinalis hydroalcoholic extract on vincristine-induced neuropathy in mice. Chin J Nat Med 9:354–358. https://doi.org/10.3724/SP.J.1009.2011.00354

    Article  Google Scholar 

  43. Samshuddin S, Narayana B, Sarojini BK, Madhu LN (2013) A study on the reactions of alkyl 4,6-bis (4-fluorophenyl)-2-oxocyclohex-3-ene-1-carboxylate and in vitro antioxidant activity of derivatives. Med Chem Res 22:3002–3011. https://doi.org/10.1007/s00044-012-0304-7

    Article  CAS  Google Scholar 

  44. Cata J, Weng H, Lee B, Reuben J, Dougherty P (2006) Clinical and experimental findings in humans and animals with chemotherapy-induced peripheral neuropathy. Minerva Anestesiol 72:151

    CAS  PubMed  Google Scholar 

  45. Linglu D, Yuxiang L, Yaqiong X, Ru Z, Lin M, Shaoju J, Juan D, Tao S, Jianqiang Y (2014) Antinociceptive effect of matrine on vincristine-induced neuropathic pain model in mice. Neurol Sci 35:815–821. https://doi.org/10.1007/s10072-013-1603-6

    Article  PubMed  Google Scholar 

  46. Hur W, Chung JY, Choi PK, Kang HG (2019) Uremia presented as acute cranial neuropathy. Neurol Sci:1–3. https://doi.org/10.1007/s10072-019-03741-6

  47. Vitet L, Patte-Mensah C, Boujedaini N, Mensah-Nyagan A-G, Meyer L (2018) Beneficial effects of Gelsemium-based treatment against paclitaxel-induced painful symptoms. Neurol Sci 39:2183–2196. https://doi.org/10.1007/s10072-018-3575-z

    Article  PubMed  Google Scholar 

  48. Jaggi AS, Jain V, Singh N (2011) Animal models of neuropathic pain. Fundam Clin Pharmacol 25:1–28. https://doi.org/10.1111/j.1472-8206.2009.00801.x

    Article  CAS  PubMed  Google Scholar 

  49. Villani F, Busia A, Villani M, Vismara C, Viviani S, Bonfante V (2008) Serum cytokine in response to chemo-radiotherapy for Hodgkin’s disease. Tumori 94:803–808

    Article  CAS  PubMed  Google Scholar 

  50. Starobova H, Vetter I (2017) Pathophysiology of chemotherapy-induced peripheral neuropathy. Front Mol Neurosci 10:174. https://doi.org/10.3389/fnmol.2017.00174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Grisold W, Cavaletti G, Windebank AJ (2012) Peripheral neuropathies from chemotherapeutics and targeted agents: diagnosis, treatment, and prevention. Neuro Oncol 14:iv45–iv54. https://doi.org/10.1093/neuonc/nos203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jaggi AS, Singh N (2012) Mechanisms in cancer-chemotherapeutic drugs-induced peripheral neuropathy. Toxicology 291:1–9. https://doi.org/10.1016/j.tox.2011.10.019

    Article  CAS  PubMed  Google Scholar 

  53. Meyer L, Patte-Mensah C, Taleb O, Mensah-Nyagan AG (2010) Cellular and functional evidence for a protective action of neurosteroids against vincristine chemotherapy-induced painful neuropathy. Cell Mol Life Sci 67:3017–3034. https://doi.org/10.1007/s00018-010-0372-0

    Article  CAS  PubMed  Google Scholar 

  54. Dworkin RH, O’connor AB, Backonja M, Farrar JT, Finnerup NB, Jensen TS, Kalso EA, Loeser JD, Miaskowski C, Nurmikko TJ (2007) Pharmacologic management of neuropathic pain: evidence-based recommendations. Pain 132(3):237–251

    Article  CAS  PubMed  Google Scholar 

  55. Mora E, Smith EML, Donohoe C, Hertz DL (2016) Vincristine-induced peripheral neuropathy in pediatric cancer patients. Am J Cancer Res 6:2416

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Lynch JJ III, Wade CL, Zhong CM, Mikusa JP, Honore P (2004) Attenuation of mechanical allodynia by clinically utilized drugs in a rat chemotherapy-induced neuropathic pain model. Pain 110(1–2):56–63

    Article  CAS  PubMed  Google Scholar 

  57. Flatters SJ, Bennett GJ (2004) Ethosuximide reverses paclitaxel- and vincristine-induced painful peripheral neuropathy. Pain 109:150–161. https://doi.org/10.1016/j.pain.2004.01.029

    Article  CAS  PubMed  Google Scholar 

  58. Bhalla S, Singh N, Jaggi AS (2015) Dose-related neuropathic and anti-neuropathic effects of simvastatin in vincristine-induced neuropathic pain in rats. Food Chem Toxicol 80:32–40. https://doi.org/10.1016/j.fct.2015.02.016

    Article  CAS  PubMed  Google Scholar 

  59. Bang S, Kim YS, Jeong SR (2016) Anti-allodynic effect of theoesberiven F in a vincristine-induced neuropathy model. Exp Ther Med 12:799–803. https://doi.org/10.3892/etm.2016.3396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Geis C, Beyreuther BK, Stöhr T, Sommer C (2011) Lacosamide has protective disease modifying properties in experimental vincristine neuropathy. Neuropharmacology 61:600–607. https://doi.org/10.1016/j.neuropharm.2011.05.001

    Article  CAS  PubMed  Google Scholar 

  61. Xiao WH, Bennett GJ (2008) Chemotherapy-evoked neuropathic pain: abnormal spontaneous discharge in A-fiber and C-fiber primary afferent neurons and its suppression by acetyl-L-carnitine. Pain 135:262–270. https://doi.org/10.1016/j.pain.2007.06.001

    Article  CAS  PubMed  Google Scholar 

  62. Mika J, Zychowska M, Popiolek-Barczyk K, Rojewska E, Przewlocka B (2013) Importance of glial activation in neuropathic pain. Eur J Pharmacol 716:106–119. https://doi.org/10.1016/j.ejphar.2013.01.072

    Article  CAS  PubMed  Google Scholar 

  63. Carozzi V, Canta A, Chiorazzi A (2015) Chemotherapy-induced peripheral neuropathy: what do we know about mechanisms? Neurosci Lett 596:90–107. https://doi.org/10.1016/j.neulet.2014.10.014

    Article  CAS  PubMed  Google Scholar 

  64. Sisignano M, Baron R, Scholich K, Geisslinger G (2014) Mechanism-based treatment for chemotherapy-induced peripheral neuropathic pain. Nat Rev Neurol 10:694–707. https://doi.org/10.1038/nrneurol.2014.211

    Article  CAS  PubMed  Google Scholar 

  65. Miyagawa M, Watanabe T, Saito M, Luu B, Yamada M, Suzuki H (2010) Use of cyclohexenone derivatives in the manufacture of a medicament for treating diabetic complications. Google Patents

  66. Yoshizawa T, Hayashi Y, Yoshida A, Ito Y, Yamada S, Takahashi S (2012) 107 therapeutic effects of the cyclohexenone derivative tac-302 on the bladder dysfunction in streptozotocin (STZ)-induced diabetic rats. J Urol 187:e43. https://doi.org/10.1016/j.juro.2012.02.155

    Article  Google Scholar 

  67. Ashalatha B, Narayana B, Vijaya Raj K (2009) Synthesis and characterization of some novel 3-bromo-2-acetylthiophene chalcones and biological evaluation of their ethyl-4-(3-bromothien-2-yl)-2-oxo-6-(aryl) cyclohex-3-ene-1-carboxylate derivatives. Phosphorus Sulfur Silicon Relat Elem 184:1904–1919. https://doi.org/10.1080/10426500802414189

    Article  CAS  Google Scholar 

  68. Kato T, Ishii H, Kawai K, Sawa Y (1984) Synthesis and analgesic activity of cyclohexenylmethylamines and related compounds. Chem Pharm Bull 32:2279–2289

    Article  CAS  Google Scholar 

  69. Yaouba S, Koch A, Guantai EM, Derese S, Irungu B, Heydenreich M, Yenesew A (2018) Alkenyl cyclohexanone derivatives from Lannea rivae and Lannea schweinfurthii. Phytochem Lett 23:141–148. https://doi.org/10.1016/j.phytol.2017.12.001

    Article  CAS  Google Scholar 

  70. Fujioka H, Kotoku N, Sawama Y, Nagatomi Y, Kita Y (2002) Concise asymmetric synthesis of a model compound, (4S,5S,6S)-6-(2,2-dimethoxy)ethyl-4,5-epoxy-6-hydroxy-2-cyclohexenone, for the cyclohexenone core of scyphostatin. Tetrahedron Lett 43:4825–4828. https://doi.org/10.1016/S0040-4039(02)00916-4

    Article  CAS  Google Scholar 

  71. Hoye TR, Tennakoon MA (2000) Synthesis (and alternative proof of configuration) of the scyphostatin C (1’)-C(20’) trienoyl fragment. Organic Lett 2:1481–1483. https://doi.org/10.1021/ol0058386

    Article  CAS  Google Scholar 

  72. Lopes L, Pereira S, Silva L, Figueiredo K, Moura B, Almeida F, Sousa F (2009) Antinociceptive effect of topiramate in models of acute pain and diabetic neuropathy in rodents. Life Sci 84:105–110. https://doi.org/10.1016/j.lfs.2008.11.005

    Article  CAS  PubMed  Google Scholar 

  73. Ranjithkumar R, Prathab Balaji S, Balaji B, Ramesh R, Ramanathan M (2013) Standardized aqueous Tribulus terristris (Nerunjil) extract attenuates hyperalgesia in experimentally induced diabetic neuropathic pain model: role of oxidative stress and inflammatory mediators. Phytother Res 27:1646–1657. https://doi.org/10.1002/ptr.4915

    Article  PubMed  Google Scholar 

  74. Muthuraman A, Singh N (2011) Attenuating effect of hydroalcoholic extract of Acorus calamus in vincristine-induced painful neuropathy in rats. J Nat Med 65:480–487. https://doi.org/10.1007/s11418-011-0525-y

    Article  CAS  PubMed  Google Scholar 

  75. Muthuraman A, Singh N, Jaggi AS (2011) Protective effect of Acorus calamus L. in rat model of vincristine induced painful neuropathy: an evidence of anti-inflammatory and anti-oxidative activity. Food Chem Toxicol 49:2557–2563. https://doi.org/10.1016/j.fct.2011.06.069

    Article  CAS  PubMed  Google Scholar 

  76. Kim HK, Zhang YP, Gwak YS, Abdi S (2010) Phenyl N-tert-butylnitrone, a free radical scavenger, reduces mechanical allodynia in chemotherapy-induced neuropathic pain in rats. Anesthesiology 112:432–439. https://doi.org/10.1097/ALN.0b013e3181ca31bd

    Article  CAS  PubMed  Google Scholar 

  77. Okoth DA, Akala HM, Johnson JD, Koorbanally NA (2016) Alkyl phenols, alkenyl cyclohexenones and other phytochemical constituents from Lannea rivae (chiov) Sacleux (Anacardiaceae) and their bioactivity. Med Chem Res 25:690–703. https://doi.org/10.1007/s00044-016-1521-2

    Article  CAS  Google Scholar 

  78. Mazimba O, Wale K, Loeto D, Kwape T (2014) Antioxidant and antimicrobial studies on fused-ring pyrazolones and isoxazolones. Bioorg Med Chem 22:6564–6569. https://doi.org/10.1016/j.bmc.2014.10.015

    Article  CAS  PubMed  Google Scholar 

  79. Rose M, Kam P (2002) Gabapentin: pharmacology and its use in pain management. Anaesthesia 57:451–462

    Article  CAS  PubMed  Google Scholar 

  80. Bennett MI, Simpson KH (2004) Gabapentin in the treatment of neuropathic pain. Palliat Med 18:5–11. https://doi.org/10.1191/0269216304pm845ra

    Article  PubMed  Google Scholar 

  81. Gilron I, Flatters SJ (2006) Gabapentin and pregabalin for the treatment of neuropathic pain: a review of laboratory and clinical evidence. Pain Res Manag 11:16A–29A. https://doi.org/10.1155/2006/651712

    Article  Google Scholar 

Download references

Acknowledgments

The selected cyclohexenone compound has been synthesized as part of a series of compounds and their structures were confirmed by Dr. Rasool Khan, Associate Professor, Institute of Chemical Science, University of Peshawar. We are grateful to him for providing a series of compounds and after preliminary study; we have selected the cited CHD compound for neuropharmacological study.

Author information

Authors and Affiliations

Authors

Contributions

GA initiated the research project and directed the research scholars as supervisor in conducting pharmacological experiments. GA critically evaluated the contents of the final version of the manuscript. JK accomplished the pharmacological experiments and performed calculations and statistical analysis. He developed the preliminary draft of the manuscript. RU helped JK in the conduction of the experiments. SU conducted experiment-related synthesis and structure confirmation under the supervision of RK. RK helped in planning and supervising the experiments related to chemistry of our selected compounds (chemistry structural data not included in this manuscript). All authors read and approved the final manuscript.

Corresponding author

Correspondence to Gowhar Ali.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, J., Ali, G., Khan, R. et al. Attenuation of vincristine-induced neuropathy by synthetic cyclohexenone-functionalized derivative in mice model. Neurol Sci 40, 1799–1811 (2019). https://doi.org/10.1007/s10072-019-03884-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-019-03884-6

Keywords

Navigation