Skip to main content

Advertisement

Log in

Therapeutic potential of combined viral transduction and CRISPR/Cas9 gene editing in treating neurodegenerative diseases

  • Review Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Background and purpose

The central nervous system (CNS) faces unique difficulties in attaining permanent therapy for neurodegenerative disorder (ND). Genomic level forms of therapy have garnered interest in the recent decade, with the novel CRISPR/Cas9 gene editing tool continuing to be explored due to its efficiency, safety, and adaptability to varying conditions. With the aid of viral vectors as transport vectors, the gene editing tool has produced promising in vitro and in vivo findings in study models. Thus, this review focuses on the recent advancements and update of CRISPR/Cas9 to combat neurodegenerative diseases.

Methods

Articles detailing potential applications of CRISPR/Cas9 in neurodegenerative settings were retrieved from PubMed and Google Scholar with the keywords “CRISPR,” “gene editing,” and “neurodegenerative diseases.” Relevant information was collected and critically reviewed.

Results

The utility of CRISPR/Cas9 coupled with viral transduction ranges from the disruption of amyloid precursor protein (APP) production at a genomic level in Alzheimer’s disease (AD) to the deletion of varying exon portions of the Dmd gene in Duchenne muscular dystrophy (DMD) which would increase dystrophin expression. This usage of CRISPR/Cas9 also extends to experimentally ameliorate the neurodegenerative effects caused by viral infections.

Conclusion

The CRISPR/Cas9 gene editing tool is a powerful arsenal in the field of gene therapy and molecular medicine; hence, more research should be called to focus on the ample potential this tool has to offer in the field of neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nathan PJ, Cobb SR, Lu B, Bullmore ET, Davies CH (2011) Studying synaptic plasticity in the human brain and opportunities for drug discovery. Curr Opin Pharmacol 11:540–548. https://doi.org/10.1016/j.coph.2011.06.008

    Article  CAS  PubMed  Google Scholar 

  2. Bozyczko-Coyne D, Williams M (2007) Neurodegeneration. Compr Med Chem II, Elsevier p. 193–228. https://doi.org/10.1016/B0-08-045044-X/00168-1

    Chapter  Google Scholar 

  3. Veazey C, Ozlem Erden Aki S, Cook KF, Lai EC, Kunik ME (2005) Prevalence and treatment of depression in Parkinson’s disease. J Neuropsychiatr Clin Neurosci 17:310–323. https://doi.org/10.1176/jnp.17.3.310

    Article  Google Scholar 

  4. Sasmita AO, Kuruvilla J, Ling APK (2018) Harnessing neuroplasticity: modern approaches and clinical future. Int J Neurosci: 01–40. https://doi.org/10.1080/00207454.2018.1466781

  5. Bankiewicz KS, Eberling JL, Kohutnicka M, Jagust W, Pivirotto P, Bringas J, Cunningham J, Budinger TF, Harvey-White J (2000) Convection-enhanced delivery of AAV vector in parkinsonian monkeys; in vivo detection of gene expression and restoration of dopaminergic function using pro-drug approach. Exp Neurol 164:2–14. https://doi.org/10.1006/exnr.2000.7408

    Article  CAS  PubMed  Google Scholar 

  6. Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–1278. https://doi.org/10.1016/j.cell.2014.05.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nayerossadat N, Ali P, Maedeh T (2012) Viral and nonviral delivery systems for gene delivery. Adv Biomed Res 1:27. https://doi.org/10.4103/2277-9175.98152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bouard D, Alazard-Dany N, Cosset F-L (2009) Viral vectors: from virology to transgene expression. Br J Pharmacol 157:153–165. https://doi.org/10.1038/bjp.2008.349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Holehonnur R, Lella SK, Ho A, Luong JA, Ploski JE (2015) The production of viral vectors designed to express large and difficult to express transgenes within neurons. Mol Brain 8:12. https://doi.org/10.1186/s13041-015-0100-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Abordo-Adesida E, Follenzi A, Barcia C, Sciascia S, Castro MG, Naldini L, Lowenstein PR (2005) Stability of lentiviral vector-mediated transgene expression in the brain in the presence of systemic antivector immune responses. Hum Gene Ther 16:741–751. https://doi.org/10.1089/hum.2005.16.741

    Article  CAS  PubMed  Google Scholar 

  11. Sengupta R, Mukherjee C, Sarkar N, Sun Z, Lesnik J, Huang J, Lu B (2016) An optimized protocol for packaging pseudotyped integrase defective lentivirus. Biol Proced Online 18:14. https://doi.org/10.1186/s12575-016-0044-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schambach A, Zychlinski D, Ehrnstroem B, Baum C (2013) Biosafety features of lentiviral vectors. Hum Gene Ther 24:132–142. https://doi.org/10.1089/hum.2012.229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wanisch K, Yáñez-Muñoz RJ (2009) Integration-deficient lentiviral vectors: a slow coming of age. Mol Ther 17:1316–1332. https://doi.org/10.1038/mt.2009.122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen X, Gonçalves MAFV (2016) Engineered viruses as genome editing devices. Mol Ther 24:447–457. https://doi.org/10.1038/mt.2015.164

    Article  CAS  PubMed  Google Scholar 

  15. Lerchner W, Corgiat B, Der Minassian V, Saunders RC, Richmond BJ (2014) Injection parameters and virus dependent choice of promoters to improve neuron targeting in the nonhuman primate brain. Gene Ther 21:233–241. https://doi.org/10.1038/gt.2013.75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Asokan A, Schaffer DV, Jude Samulski R (2012) The AAV vector toolkit: poised at the clinical crossroads. Mol Ther 20:699–708. https://doi.org/10.1038/mt.2011.287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ai J, Li J, Gessler DJ, Su Q, Wei Q, Li H, Gao G (2017) Adeno-associated virus serotype rh.10 displays strong muscle tropism following intraperitoneal delivery. Sci Rep 7:40336. https://doi.org/10.1038/srep40336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xie J, Xie Q, Zhang H, Ameres SL, Hung J-H, Su Q, He R, Mu X, Seher Ahmed S, Park S, Kato H, Li C, Mueller C, Mello CC, Weng Z, Flotte TR, Zamore PD, Gao G (2011) MicroRNA-regulated, systemically delivered rAAV9: a step closer to CNS-restricted transgene expression. Mol Ther 19:526–535. https://doi.org/10.1038/mt.2010.279

    Article  CAS  PubMed  Google Scholar 

  19. Vagner T, Dvorzhak A, Wójtowicz AM, Harms C, Grantyn R (2016) Systemic application of AAV vectors targeting GFAP-expressing astrocytes in Z-Q175-KI Huntington’s disease mice. Mol Cell Neurosci 77:76–86. https://doi.org/10.1016/j.mcn.2016.10.007

    Article  CAS  PubMed  Google Scholar 

  20. Rosenberg JB, Sondhi D, Rubin DG, Monette S, Chen A, Cram S, de BP, Kaminsky SM, Sevin C, Aubourg P, Crystal RG (2014) Comparative efficacy and safety of multiple routes of direct CNS administration of adeno-associated virus gene transfer vector serotype rh.10 expressing the human arylsulfatase a cDNA to nonhuman primates. Hum Gene Ther Clin Dev 25:164–177. https://doi.org/10.1089/humc.2013.239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kay MA, Glorioso JC, Naldini L (2001) Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat Med 7:33–40. https://doi.org/10.1038/83324

    Article  CAS  PubMed  Google Scholar 

  22. Yang B, Li S, Wang H, Guo Y, Gessler DJ, Cao C, Su Q, Kramer J, Zhong L, Ahmed SS, Zhang H, He R, Desrosiers RC, Brown R, Xu Z, Gao G (2014) Global CNS transduction of adult mice by intravenously delivered rAAVrh.8 and rAAVrh.10 and nonhuman primates by rAAVrh.10. Mol Ther 22:1299–1309. https://doi.org/10.1038/mt.2014.68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Murlidharan G, Sakamoto K, Rao L, Corriher T, Wang D, Gao G, Sullivan P, Asokan A (2016) CNS-restricted transduction and CRISPR/Cas9-mediated gene deletion with an engineered AAV vector. Mol Ther Nucleic Acids 5:e338. https://doi.org/10.1038/mtna.2016.49

    Article  PubMed  PubMed Central  Google Scholar 

  24. Swiech L, Heidenreich M, Banerjee A, Habib N, Li Y, Trombetta J, Sur M, Zhang F (2015) In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. Nat Biotechnol 33:102–106. https://doi.org/10.1038/nbt.3055

    Article  CAS  PubMed  Google Scholar 

  25. Kim EJ, Kang KH, Ju JH (2017) CRISPR-Cas9: a promising tool for gene editing on induced pluripotent stem cells. Korean J Intern Med 32:42–61. https://doi.org/10.3904/kjim.2016.198

    Article  PubMed  PubMed Central  Google Scholar 

  26. He X, Tan C, Wang F, Wang Y, Zhou R, Cui D, You W, Zhao H, Ren J, Feng B (2016) Knock-in of large reporter genes in human cells via CRISPR/Cas9-induced homology-dependent and independent DNA repair. Nucleic Acids Res 44:e85–e85. https://doi.org/10.1093/nar/gkw064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Maruyama T, Dougan SK, Truttmann MC, Bilate AM, Ingram JR, Ploegh HL (2015) Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol 33:538–542. https://doi.org/10.1038/nbt.3190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Konermann S, Brigham MD, Trevino AE, Hsu PD, Heidenreich M, Cong L et al (2013) Optical control of mammalian endogenous transcription and epigenetic states. Nature 500:472–476. https://doi.org/10.1038/nature12466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sweatt JD (2013) The emerging field of neuroepigenetics. Neuron 80:624–632. https://doi.org/10.1016/j.neuron.2013.10.023

    Article  CAS  PubMed  Google Scholar 

  30. Marks WJ, Bartus RT, Siffert J, Davis CS, Lozano A, Boulis N et al (2010) Gene delivery of AAV2-neurturin for Parkinson’s disease: a double-blind, randomised, controlled trial. Lancet Neurol 9:1164–1172. https://doi.org/10.1016/S1474-4422(10)70254-4

    Article  CAS  PubMed  Google Scholar 

  31. Perdomini M, Belbellaa B, Monassier L, Reutenauer L, Messaddeq N, Cartier N, Crystal RG, Aubourg P, Puccio H (2014) Prevention and reversal of severe mitochondrial cardiomyopathy by gene therapy in a mouse model of Friedreich’s ataxia. Nat Med 20:542–547. https://doi.org/10.1038/nm.3510

    Article  CAS  PubMed  Google Scholar 

  32. Chen Y, Xiong M, Dong Y, Haberman A, Cao J, Liu H, Zhou W, Zhang SC (2016) Chemical control of grafted human PSC-derived neurons in a mouse model of Parkinson’s disease. Cell Stem Cell 18:817–826. https://doi.org/10.1016/j.stem.2016.03.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yang S, Chang R, Yang H, Zhao T, Hong Y, Kong HE, Sun X, Qin Z, Jin P, Li S, Li XJ (2017) CRISPR/Cas9-mediated gene editing ameliorates neurotoxicity in mouse model of Huntington’s disease. J Clin Invest 127:2719–2724. https://doi.org/10.1172/JCI92087

    Article  PubMed  PubMed Central  Google Scholar 

  34. György B, Lööv C, Zaborowski MP, Takeda S, Kleinstiver BP, Commins C, Kastanenka K, Mu D, Volak A, Giedraitis V, Lannfelt L, Maguire CA, Joung JK, Hyman BT, Breakefield XO, Ingelsson M (2018) CRISPR/Cas9 mediated disruption of the Swedish APP allele as a therapeutic approach for early-onset Alzheimer’s disease. Mol Ther Nucleic Acids 11:429–440. https://doi.org/10.1016/j.omtn.2018.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Monteys AM, Ebanks SA, Keiser MS, Davidson BL (2017) CRISPR/Cas9 editing of the mutant huntingtin allele in vitro and in vivo. Mol Ther 25:12–23. https://doi.org/10.1016/j.ymthe.2016.11.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gaj T, Ojala DS, Ekman FK, Byrne LC, Limsirichai P, Schaffer DV (2017) In vivo genome editing improves motor function and extends survival in a mouse model of ALS. Sci Adv 3:eaar3952. https://doi.org/10.1126/sciadv.aar3952

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lin H, Hu H, Duan W, Liu Y, Tan G, Li Z, Liu YK, Deng BB, Song XQ, Wang W, Wen D, Wang Y, Li CY (2018) Intramuscular delivery of scAAV9-hIGF1 prolongs survival in the hSOD1G93A ALS mouse model via upregulation of D-amino acid oxidase. Mol Neurobiol 55:682–695. https://doi.org/10.1007/s12035-016-0335-z

    Article  CAS  PubMed  Google Scholar 

  38. Long C, Amoasii L, Mireault AA, McAnally JR, Li H, Sanchez-Ortiz E et al (2016) Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science 351(80):400–403. https://doi.org/10.1126/science.aad5725

    Article  CAS  PubMed  Google Scholar 

  39. Nelson CE, Hakim CH, Ousterout DG, Thakore PI, Moreb EA, Rivera RMC et al (2016) In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 351(80):403–407. https://doi.org/10.1126/science.aad5143

    Article  CAS  PubMed  Google Scholar 

  40. Tabebordbar M, Zhu K, Cheng JKW, Chew WL, Widrick JJ, Yan WX et al (2016) In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science 351(80):407–411. https://doi.org/10.1126/science.aad5177

    Article  CAS  PubMed  Google Scholar 

  41. Bengtsson NE, Hall JK, Odom GL, Phelps MP, Andrus CR, Hawkins RD, Hauschka SD, Chamberlain JR, Chamberlain JS (2017) Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy. Nat Commun 8:14454. https://doi.org/10.1038/ncomms14454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chou Y, Krupp A, Kaynor C, Gaudin R, Ma M, Cahir-McFarland E, Kirchhausen T (2016) Inhibition of JCPyV infection mediated by targeted viral genome editing using CRISPR/Cas9. Sci Rep 6:36921. https://doi.org/10.1038/srep36921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wollebo HS, Bellizzi A, Kaminski R, Hu W, White MK, Khalili K (2015) CRISPR/Cas9 system as an agent for eliminating polyomavirus JC infection. PLoS One 10:e0136046. https://doi.org/10.1371/journal.pone.0136046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hu W, Kaminski R, Yang F, Zhang Y, Cosentino L, Li F, Luo B, Alvarez-Carbonell D, Garcia-Mesa Y, Karn J, Mo X, Khalili K (2014) RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection. Proc Natl Acad Sci 111:11461–11466. https://doi.org/10.1073/pnas.1405186111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liao H-K, Gu Y, Diaz A, Marlett J, Takahashi Y, Li M, Suzuki K, Xu R, Hishida T, Chang CJ, Esteban CR, Young J, Belmonte JCI (2015) Use of the CRISPR/Cas9 system as an intracellular defense against HIV-1 infection in human cells. Nat Commun 6:6413. https://doi.org/10.1038/ncomms7413

    Article  CAS  PubMed  Google Scholar 

  46. van Diemen FR, Kruse EM, Hooykaas MJG, Bruggeling CE, Schürch AC, van Ham PM, Imhof SM, Nijhuis M, Wiertz EJHJ, Lebbink RJ (2016) CRISPR/Cas9-mediated genome editing of herpesviruses limits productive and latent infections. PLoS Pathog 12:e1005701. https://doi.org/10.1371/journal.ppat.1005701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ross CA, Poirier MA (2004) Protein aggregation and neurodegenerative disease. Nat Med 10:S10–S17. https://doi.org/10.1038/nm1066

    Article  CAS  PubMed  Google Scholar 

  48. Pires C, Schmid B, Petræus C, Poon A, Nimsanor N, Nielsen TT, Waldemar G, Hjermind LE, Nielsen JE, Hyttel P, Freude KK (2016) Generation of a gene-corrected isogenic control cell line from an Alzheimer’s disease patient iPSC line carrying a A79V mutation in PSEN1. Stem Cell Res 17:285–288. https://doi.org/10.1016/j.scr.2016.08.002

    Article  CAS  PubMed  Google Scholar 

  49. Ortiz-Virumbrales M, Moreno CL, Kruglikov I, Marazuela P, Sproul A, Jacob S, Zimmer M, Paull D, Zhang B, Schadt EE, Ehrlich ME, Tanzi RE, Arancio O, Noggle S, Gandy S (2017) CRISPR/Cas9-correctable mutation-related molecular and physiological phenotypes in iPSC-derived Alzheimer’s PSEN2 N141I neurons. Acta Neuropathol Commun 5:77. https://doi.org/10.1186/s40478-017-0475-z

    Article  PubMed  PubMed Central  Google Scholar 

  50. Yagi T, Ito D, Okada Y, Akamatsu W, Nihei Y, Yoshizaki T, Yamanaka S, Okano H, Suzuki N (2011) Modeling familial Alzheimer’s disease with induced pluripotent stem cells. Hum Mol Genet 20:4530–4539. https://doi.org/10.1093/hmg/ddr394

    Article  CAS  PubMed  Google Scholar 

  51. Ryan SD, Dolatabadi N, Chan SF, Zhang X, Akhtar MW, Parker J, Soldner F, Sunico CR, Nagar S, Talantova M, Lee B, Lopez K, Nutter A, Shan B, Molokanova E, Zhang Y, Han X, Nakamura T, Masliah E, Yates JR III, Nakanishi N, Andreyev AY, Okamoto SI, Jaenisch R, Ambasudhan R, Lipton SA (2013) Isogenic human iPSC Parkinson’s model shows nitrosative stress-induced dysfunction in MEF2-PGC1α transcription. Cell 155:1351–1364. https://doi.org/10.1016/j.cell.2013.11.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kordasiewicz HB, Stanek LM, Wancewicz EV, Mazur C, McAlonis MM, Pytel KA et al (2012) Sustained therapeutic reversal of Huntington’s disease by transient repression of huntingtin synthesis. Neuron 74:1031–1044. https://doi.org/10.1016/j.neuron.2012.05.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yang S-H, Cheng P-H, Banta H, Piotrowska-Nitsche K, Yang J-J, Cheng ECH, Snyder B, Larkin K, Liu J, Orkin J, Fang ZH, Smith Y, Bachevalier J, Zola SM, Li SH, Li XJ, Chan AWS (2008) Towards a transgenic model of Huntington’s disease in a non-human primate. Nature 453:921–924. https://doi.org/10.1038/nature06975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fitzner D, Simons M (2010) Chronic progressive multiple sclerosis – pathogenesis of neurodegeneration and therapeutic strategies. Curr Neuropharmacol 8:305–315. https://doi.org/10.2174/157015910792246218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wokke J (1996) Riluzole. Lancet 348:795–799. https://doi.org/10.1016/S0140-6736(96)03181-9

    Article  CAS  PubMed  Google Scholar 

  56. Ousterout DG, Kabadi AM, Thakore PI, Majoros WH, Reddy TE, Gersbach CA (2015) Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy. Nat Commun 6:6244. https://doi.org/10.1038/ncomms7244

    Article  CAS  PubMed  Google Scholar 

  57. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(80):819–823. https://doi.org/10.1126/science.1231143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Shishido-Hara Y (2015) Progressive multifocal leukoencephalopathy: dot-shaped inclusions and virus-host interactions. Neuropathology 35:487–496. https://doi.org/10.1111/neup.12203

    Article  CAS  PubMed  Google Scholar 

  59. Wang T, Rumbaugh JA, Nath A (2006) Viruses and the brain: from inflammation to dementia. Clin Sci 110:393–407. https://doi.org/10.1042/CS20050278

    Article  CAS  Google Scholar 

  60. Boban J, Kozic D, Turkulov V, Ostojic J, Semnic R, Lendak D, Brkic S (2017) HIV-associated neurodegeneration and neuroimmunity: multivoxel MR spectroscopy study in drug-naïve and treated patients. Eur Radiol 27:4218–4236. https://doi.org/10.1007/s00330-017-4772-5

    Article  PubMed  Google Scholar 

  61. Ebina H, Misawa N, Kanemura Y, Koyanagi Y (2013) Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Sci Rep 3:2510. https://doi.org/10.1038/srep02510

    Article  PubMed  PubMed Central  Google Scholar 

  62. Packer RJ, Gurney JG, Punyko JA, Donaldson SS, Inskip PD, Stovall M, Yasui Y, Mertens AC, Sklar CA, Nicholson HS, Zeltzer LK, Neglia JP, Robison LL (2003) Long-term neurologic and neurosensory sequelae in adult survivors of a childhood brain tumor: childhood cancer survivor study. J Clin Oncol 21:3255–3261. https://doi.org/10.1200/JCO.2003.01.202

    Article  PubMed  Google Scholar 

  63. Mendell JR, Al-Zaidy S, Shell R, Arnold WD, Rodino-Klapac LR, Prior TW et al (2017) Single-dose gene-replacement therapy for spinal muscular atrophy. N Engl J Med 377:1713–1722. https://doi.org/10.1056/NEJMoa1706198

    Article  CAS  PubMed  Google Scholar 

  64. Coutelle C, Rodeck C (2002) On the scientific and ethical issues of fetal somatic gene therapy. Gene Ther 9:670–673. https://doi.org/10.1038/sj.gt.3301761

    Article  CAS  PubMed  Google Scholar 

  65. Ojala DS, Amara DP, Schaffer DV (2015) Adeno-associated virus vectors and neurological gene therapy. Neuroscience 21:84–98. https://doi.org/10.1177/1073858414521870

    Article  CAS  Google Scholar 

  66. Jaenisch R, Zhang F, Gage F (2017) Genome editing in neurosciences. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-60192-2

    Book  Google Scholar 

  67. Laycock-van Spyk S, Thomas N, Cooper DN, Upadhyaya M (2011) Neurofibromatosis type 1-associated tumours: their somatic mutational spectrum and pathogenesis. Hum Genomics 5:623–690. https://doi.org/10.1186/1479-7364-5-6-623

    Article  PubMed  Google Scholar 

  68. Platt RJ, Chen S, Zhou Y, Yim MJ, Swiech L, Kempton HR, Dahlman JE, Parnas O, Eisenhaure TM, Jovanovic M, Graham DB, Jhunjhunwala S, Heidenreich M, Xavier RJ, Langer R, Anderson DG, Hacohen N, Regev A, Feng G, Sharp PA, Zhang F (2014) CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 159:440–455. https://doi.org/10.1016/j.cell.2014.09.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Huang J, Su Q, Yang J, Lv Y, He Y, Chen J et al (2015) Sample sizes in dosage investigational clinical trials: a systematic evaluation. Drug Des Devel Ther 9:305. https://doi.org/10.2147/DDDT.S76135

    Article  PubMed  PubMed Central  Google Scholar 

  70. Meyer K, Ferraiuolo L, Schmelzer L, Braun L, McGovern V, Likhite S, Michels O, Govoni A, Fitzgerald J, Morales P, Foust KD, Mendell JR, Burghes AHM, Kaspar BK (2015) Improving single injection CSF delivery of AAV9-mediated gene therapy for SMA: a dose–response study in mice and nonhuman primates. Mol Ther 23:477–487. https://doi.org/10.1038/mt.2014.210

    Article  CAS  PubMed  Google Scholar 

  71. Takahashi M, Suzuki M, Fukuoka M, Fujikake N, Watanabe S, Murata M, Wada K, Nagai Y, Hohjoh H (2015) Normalization of overexpressed α-synuclein causing Parkinson’s disease by a moderate gene silencing with RNA interference. Mol Ther Nucleic Acids 4:e241. https://doi.org/10.1038/mtna.2015.14

    Article  PubMed  Google Scholar 

  72. Aronin N, DiFiglia M (2014) Huntingtin-lowering strategies in Huntington’s disease: antisense oligonucleotides, small RNAs, and gene editing. Mov Disord 29:1455–1461. https://doi.org/10.1002/mds.26020

    Article  CAS  PubMed  Google Scholar 

  73. Long C, Amoasii L, Bassel-Duby R, Olson EN (2016) Genome editing of monogenic neuromuscular diseases. JAMA Neurol 73:1349–1355. https://doi.org/10.1001/jamaneurol.2016.3388

    Article  PubMed  PubMed Central  Google Scholar 

  74. Baylis F, McLeod M (2018) First-in-human phase 1 CRISPR gene editing cancer trials: are we ready? Curr Gene Ther 17:309–319. https://doi.org/10.2174/1566523217666171121165935

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Pick Kiong Ling.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuruvilla, J., Sasmita, A.O. & Ling, A.P.K. Therapeutic potential of combined viral transduction and CRISPR/Cas9 gene editing in treating neurodegenerative diseases. Neurol Sci 39, 1827–1835 (2018). https://doi.org/10.1007/s10072-018-3521-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-018-3521-0

Keywords

Navigation